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Lyapunov Stability Theory

Consider a time invariant system

ẋ = f (x)

and assume equilibrium at x = 0, i.e. f (0) = 0. If the equilibrium
of interest is x∗ ̸= 0, let x̃ = x− x∗:

˙̃x = f (x) = f (x̃+ x∗)≜ f̃ (x̃) =⇒ f̃ (0) = 0.
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Lyapunov Stability Theory

Definition: The equilibrium x = 0 is stable if for each ε > 0, there
exists δ > 0 such that

|x(0)| ≤ δ =⇒ |x(t)| ≤ ε ∀t ≥ 0.
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Lyapunov Stability Theory
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Consider a time invariant system

ẋ = f (x)

and assume equilibrium at x = 0, i.e. f (0) = 0. If the equilibrium of
interest is x⇤ 6= 0, let x̃ = x � x⇤:

˙̃x = f (x) = f (x̃ + x⇤) , f̃ (x̃) =) f̃ (0) = 0.

Definition: The equilibrium x = 0 is stable if for each # > 0, there
exists d > 0 such that

|x(0)|  d =) |x(t)|  # 8t � 0. (1)

B#

Bd

It is unstable if not stable.

Asymptotically stable if stable and x(t) ! 0 for all x(0) in a neigh-
borhood of x = 0.

Globally asymptotically stable if stable and x(t) ! 0 for every x(0).

Note that x(t) ! 0 does not necessarily imply stability: one can
construct an example where trajectories converge to the origin, but
only after a large detour that violates the stability definition.

B#

a homoclinic orbit
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Lyapunov Stability Theory

An equilibrium is unstable if not stable.
Asymptotically stable if stable and x(t)→ 0 for all x(0) in a neigh-
borhood of x = 0.
Globally asymptotically stable if stable and x(t) → 0 for every
x(0).
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▶ Khalil Chapter 4, Sastry
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Lyapunov Stability Theory

Note that x(t)→ 0 does not necessarily imply stability: one can
construct an example where trajectories converge to the origin,
but only after a large detour that violates the stability definition.
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borhood of x = 0.

Globally asymptotically stable if stable and x(t) ! 0 for every x(0).

Note that x(t) ! 0 does not necessarily imply stability: one can
construct an example where trajectories converge to the origin, but
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a homoclinic orbit
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Lyapunov’s Stability Theorem

1 Let D be an open, connected subset of Rn that includes
x = 0. If there exists a C1 function V : D → R such that

V(0) = 0 and V(x)> 0 ∀x ∈ D−{0} (positive definite)

and

V̇(x) := ∇V(x)T f (x)≤ 0 ∀x ∈ D (negative semidefinite)

then x = 0 is stable.

2 If V̇(x)< 0 ∀x ∈ D−{0} (negative definite)
then x = 0 is asymptotically stable.

3 If, in addition, D = Rn and

|x| → ∞ =⇒ V(x)→ ∞ (radially unbounded)

then x = 0 is globally asymptotically stable.
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Lyapunov’s Stability Theorem (Proof)

Sketch of the proof:
The sets Ωc ≜ {x : V(x)≤ c} for constants c are called level sets
of V and are positively invariant because ∇V(x)T f (x)≤ 0.
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Lyapunov’s Stability Theorem (Proof cont.)

Stability follows from this property: choose a level set inside
the ball of radius ε , and a ball of radius δ inside this level set.
Trajectories starting in Bδ can’t leave Bε since they remain inside
the level set.
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Lyapunov’s Stability Theorem

Aleksandr Lyapunov (1857-1918)

1. Let D be an open, connected subset of Rn that includes x = 0. If
there exists a C1 function V : D ! R such that

V(0) = 0 and V(x) > 0 8x 2 D � {0} (positive definite)

and

V̇(x) := rV(x)T f (x)  0 8x 2 D (negative semidefinite)

then x = 0 is stable.

2. If V̇(x) < 0 8x 2 D � {0} (negative definite)

then x = 0 is asymptotically stable.

3. If, in addition, D = Rn and

|x| ! • =) V(x) ! • (radially unbounded)

then x = 0 is globally asymptotically stable.

Sketch of the proof:

The sets Wc , {x : V(x)  c} for constants c are called level sets of V
and are positively invariant because rV(x)T f (x)  0.

Stability follows from this property: choose a level set inside the ball
of radius #, and a ball of radius d inside this level set. Trajectories
starting in Bd can’t leave B# since they remain inside the level set.

B#

level set inside B#

Bd inside level set
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Lyapunov’s Stability Theorem (Proof of Asymptotic Stability)

Asymptotic stability:
Since V(x(t)) is decreasing and bounded below by 0, we conclude

V(x(t))→ c ≥ 0.

We will show c = 0 (i.e., x(t) → 0) by contradiction. Suppose
c ̸= 0:
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Asymptotic stability:

Since V(x(t)) is decreasing and bounded below by 0, we conclude

V(x(t)) ! c � 0.

We will show c = 0 (i.e., x(t) ! 0) by contradiction. Suppose c 6= 0:

V(x) = V(x0)

V(x) = c 6= 0
x0•

Let
g , min

{x: cV(x)V(x0)}
�V̇(x) > 0

where the maximum exists because it is evaluated over a bounded2 2 By positive definiteness of V, the level
sets {x : V(x)  constant} are bounded
when the constant is sufficiently small.
Since we are proving local asymptotic
stability we can assume x0 is close
enough to the origin that the constant
V(x0) is sufficiently small.

set, and is positive because V̇(x) < 0 away from x = 0. Then,

V̇(x)  �g =) V(x(t))  V(x0) � gt,

which implies V(x(t)) < 0 for t > V(x0)
g – a contradiction because

V � 0. Therefore, c = 0 which implies x(t) ! 0.

Global asymptotic stability:

Why do we need radial unboundedness?

Example:

V(x) =
x2

1
1 + x2

1
+ x2

2 (2)

Set x2 = 0, let x1 ! •: V(x) ! 1 (not radially unbounded). Then Wc

is not a bounded set for c � 1:

x1

x2

Therefore, x1(t) may grow unbounded while V(x(t)) is decreasing.
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▶ If V̇(x)< 0 ∀x ∈
D−{0} (negative
definite) then x = 0 is
asymptotically stable.



Lyapunov’s Stability Theorem (Proof of Asymptotic Stability cont.)

Let
γ ≜ min

{x: c≤V(x)≤V(x0)}
−V̇(x) > 0

where the minimum exists because it is evaluated over a bounded
set, and is positive because V̇(x)< 0 away from x = 0. Then,

V̇(x)≤−γ =⇒ V(x(t))≤ V(x0)− γt,

which implies V(x(t))< 0 for t >
V(x0)

γ
, a contradiction because

V ≥ 0. Therefore, c = 0 which implies x(t)→ 0.
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▶ By positive definiteness
of V, the level sets
{x : V(x)≤ constant} are
bounded when the
constant is sufficiently
small. Since we are
proving local asymptotic
stability we can assume
x0 is close enough to the
origin that the constant
V(x0) is sufficiently
small.



Lyapunov’s Stability Theorem (Proof of Global Asymptotic Stability)

Global asymptotic stability:
Why do we need radial unboundedness?
Example:

V(x) =
x2

1

1+ x2
1
+ x2

2

Set x2 = 0, let x1 →∞: V(x)→ 1 (not radially unbounded). Then
Ωc is not a bounded set for c ≥ 1:
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Asymptotic stability:

Since V(x(t)) is decreasing and bounded below by 0, we conclude

V(x(t)) ! c � 0.

We will show c = 0 (i.e., x(t) ! 0) by contradiction. Suppose c 6= 0:

V(x) = V(x0)

V(x) = c 6= 0
x0•

Let
g , min

{x: cV(x)V(x0)}
�V̇(x) > 0

where the maximum exists because it is evaluated over a bounded2 2 By positive definiteness of V, the level
sets {x : V(x)  constant} are bounded
when the constant is sufficiently small.
Since we are proving local asymptotic
stability we can assume x0 is close
enough to the origin that the constant
V(x0) is sufficiently small.

set, and is positive because V̇(x) < 0 away from x = 0. Then,

V̇(x)  �g =) V(x(t))  V(x0) � gt,

which implies V(x(t)) < 0 for t > V(x0)
g – a contradiction because

V � 0. Therefore, c = 0 which implies x(t) ! 0.

Global asymptotic stability:

Why do we need radial unboundedness?

Example:

V(x) =
x2

1
1 + x2

1
+ x2

2 (2)

Set x2 = 0, let x1 ! •: V(x) ! 1 (not radially unbounded). Then Wc

is not a bounded set for c � 1:

x1

x2

Therefore, x1(t) may grow unbounded while V(x(t)) is decreasing.Therefore, x1(t) may grow unbounded while V(x(t)) is decreas-
ing.
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▶ If, in addition, D = Rn

and is radially
unbounded, i.e.,

|x| → ∞ =⇒ V(x)→ ∞

then x = 0 is globally
asymptotically stable.



Finding Lyapunov Functions

Example:

ẋ =−g(x) x ∈ R, xg(x)> 0 ∀x ̸= 0

V(x) =
1
2

x2 is positive definite and radially unbounded.

V̇(x) = −xg(x) is negative definite. Therefore x = 0 is globally
asymptotically stable.

If xg(x)> 0 only in (−b,c)−{0}, then take D = (−b,c)
=⇒ x = 0 is locally asymptotically stable.
There are other equilibria where g(x) = 0, so we know global
asymptotic stability is not possible.
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Finding Lyapunov Functions

Example:
ẋ = �g(x) x 2 R, xg(x) > 0 8x 6= 0 (3)

x

g(x)

V(x) = 1
2 x2 is positive definite and radially unbounded.

V̇(x) = �xg(x) is negative definite. Therefore x = 0 is globally
asymptotically stable.

If xg(x) > 0 only in (�b, c) � {0}, then take D = (�b, c)

x

g(x)

�b c
=) x = 0 is locally asymptotically stable.

There are other equilibria where g(x) = 0, so we know global asymp-
totic stability is not possible.

Example:

ẋ1 = x2

ẋ2 = �ax2 � g(x1) a � 0, xg(x) > 0 8x 2 (�b, c) � {0}
(4)

The pendulum is a special case with
g(x) = sin(x).

The choice V(x) = 1
2 x2

1 + 1
2 x2

2 doesn’t work because V̇(x) is sign
indefinite (show this).

The function
V(x) =

Z x1

0
g(y)dy +

1
2

x2
2

is positive definite on D = (�b, c) � {0} and

V̇(x) = g(x1)x2 � ax2
2 � x2g(x1) = �ax2

2

is negative semidefinite =) stable.

If a = 0, no asymptotic stability because V̇(x) = 0 =) V(x(t)) =

V(x(0)).

"conservative system"

If a > 0, (4) is asymptotically stable but the Lyapunov function above
doesn’t allow us to reach that conclusion. We need either another V
with negative definite V̇, or the Lasalle-Krasovskii Invariance Princi-
ple to be discussed in the next lecture.



Finding Lyapunov Functions

Example:

ẋ1 = x2

ẋ2 =−ax2 −g(x1)a ≥ 0, xg(x)> 0 ∀x ∈ (−b,c)−{0}
(1)

The choice V(x) =
1
2

x2
1 +

1
2

x2
2 doesn’t work because V̇(x) is sign

indefinite (show this).
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▶ The pendulum is a
special case with
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Finding Lyapunov Functions

Example:

ẋ1 = x2

ẋ2 =−ax2 −g(x1)a ≥ 0, xg(x)> 0 ∀x ∈ (−b,c)−{0}

The choice V(x) =
1
2

x2
1 +

1
2

x2
2 doesn’t work because V̇(x) is sign

indefinite (show this). The function

V(x) =
∫ x1

0
g(y)dy+

1
2

x2
2

is positive definite on D = (−b,c)−{0} and

V̇(x) = g(x1)x2 −ax2
2 − x2g(x1) =−ax2

2

is negative semidefinite =⇒ stable.
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▶ The pendulum is a
special case with
g(x) = sin(x).



Finding Lyapunov Functions (Example cont.)

If a = 0, no asymptotic stability because V̇(x) = 0 =⇒ V(x(t)) =
V(x(0)).

"conservative system"

If a > 0, (1) is asymptotically stable but the Lyapunov function
above doesn’t allow us to reach that conclusion. We need either
another V with negative definite V̇, or the Lasalle-Krasovskii
Invariance Principle to be discussed in the next lecture.
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ẋ1 = x2

ẋ2 =−ax2 −g(x1)

a ≥ 0, xg(x)> 0

∀x ∈ (−b,c)−{0}

(1)

▶ The pendulum is a
special case with
g(x) = sin(x).


