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Existence and Uniqueness Theorems for ODEs

> Recall that local
X :f(tax) X(O) = X0 Lipschitz means for all
Theorem 1: f(#,x) locally Lipschitz in x and continuous in ¢ X0, there exists L such
= existence and uniqueness on some finite interval [0,J]. el

If (x) =f )] < Lix |

for all x,y in a
neighborhood of xj.
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Existence and Uniqueness Theorems for ODEs

» Recall that local

X :f(t7x) X(O) = X0 Lipschitz means for all
Theorem 1: f(#,x) locally Lipschitz in x and continuous in ¢ X0, there exists L such
= existence and uniqueness on some finite interval [0,J]. el
Sketch of the proof: From the local Lipschitz assumption, we If(x) —f)| < Llx—y|

can find r > 0 and L > 0 such that
f(t,x) —f(t,y)]| < Llx—y| Vx,ye {xeR": |x—xo| <r}.

From fundamental theorem of calculus, if x(¢) is a solution, then:
t
X1 =xo+ /0 F(2,x(2))dr.
—T(x)(1)

for all x,y in a
neighborhood of xj.
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Existence and Uniqueness Theorems for ODEs

Sketch of proof (cont.): To apply the Contraction Mapping The- >

orem:

A=y /0 (2, x(x))dr.
—_—

@ Choose 6 small enough that T maps the following subset
=:T(x)(t)

of C"[0, ] to itself :
U={xeC"[0,0]:|x(t) —xo| <r Vte€][0,6]},
ie.
|x(t) —xo| <r Vte€[0,0] = |T(x)(t)—xo|<r Vte][0,d].
(1)
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Existence and Uniqueness Theorems for ODEs

Sketch of proof (cont.): >
@ (Step 1 continued) To find such a & note that x(t):xOJr/tf(T’x(T))dr
t 0
—_
T(x)(t) —xo :/f 7,x(7))dt = T(x)(1)
_/ (t,x(1)) —f(7,x0) +f(7, xo))dr g
5 |x(t) — x| < 1Vt € [0, 6]
10—l < [ (ex(@) (el [ el = W0l <7
5 Vi € [0,6]. 2)
/ L|x(t) xdd’c—f—/ hdt
0 > Let h be a bound on
< (Lr+h)s. If (z,x0)|

Thus, by choosing 6 < T:—h we ensure that the

implication (2) holds.
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Existence and Uniqueness Theorems for ODEs

Sketch of proof (cont.): > Recall from Lecture 7:
C"[0, 8] the set of all

continuous functions

® Show that T is a contraction in U, i.e., there exists p < 1

st. x,yeU = [T(x)=T(y)|c <plx—ylc. [0,8] — R" with norm
Note that, for all 7 € [0, 5], e = max [0
€7 0]
TW0 =TI = [ (e.x(e) —f (5 y(E)e

<L/ (1) — y(7)|d7

&%Tg}gg} () =y(7)| = plx—yle-

Therefore,
T(x) =T()|c = max [ T(x)(1) =T(y)(1)| < plx—ylc and
p <1if 6§ <r/(Lr+h) as prescribed above.
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Existence for All Time From Global Lipschitzness

Theorem 2: f(t,x) globally Lipschitz in x uniformly in ¢, and > uniformly here means
continuous in = existence and uniqueness on [0,e0). same L works for all 1

Proof: Choose a & that doesn’t depend on xy and apply Theorem
1 repeatedly to cover [0,0). This is possible because L works

everywhere and we can pick r as large as we wish. Indeed, for

1
any 6 < 7 Wecan choose r large enough that § < i
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Existence for All Time From Global Lipschitzness

Theorem 2: f(t,x) globally Lipschitz in x uniformly in ¢, and > uniformly here means
continuous in = existence and uniqueness on [0,e0). same L works for all 1

Proof: Choose a & that doesn’t depend on xy and apply Theorem
1 repeatedly to cover [0,0). This is possible because L works

everywhere and we can pick r as large as we wish. Indeed, for

1
any 6 < 7 Wecan choose r large enough that § < i

Q: Why can’t we do this in Theorem 17
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Existence for All Time From Global Lipschitzness

Theorem 2: f(t,x) globally Lipschitz in x uniformly in ¢, and > uniformly here means
continuous in = existence and uniqueness on [0,e0). same L works for all 1

Proof: Choose a & that doesn’t depend on xy and apply Theorem
1 repeatedly to cover [0,0). This is possible because L works

everywhere and we can pick r as large as we wish. Indeed, for

1
any 6 < 7 Wecan choose r large enough that 6 < Lr:h'

Q: Why can’t we do this in Theorem 17

A: 6 depends on x( (no universal L) and x( changes at the next
iteration. We can't use the same § in every iteration:

| \ LY

OI_ 51 \ 52\53\ [] }tf
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Existence and Uniqueness Theorems for ODEs

» The theorems above are sufficient only, and can be
conservative:
Example: X = —x> is not globally Lipschitz but
2
X
0
x(1) =sgn(xp)y | ———
() =senta)y [ 1755

is defined on [0, o).
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Continuous Dependence on Initial Conditions and Parameters

Theorem 3: (Continuous dependence on initial conditions) Let
x(t),y(t) be two solutions of & = f(z,x) starting from xo and yy,
and remaining in a set with Lipschitz constant L on [0,7]. Then,
for any € > 0, there exists §(€,7) > 0 such that

X0 —yo <8 = [x(r) —y(1)| < & Vi€[0,1].

» This conclusion does not hold on infinite time intervals
(even if f is globally Lipschitz).
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Example: bistable system
A

X0 Yo

If € is smaller than the distance between the two stable equilibria,
no choice of & guarantees |x(f) —y(t)| <& Vi >0.
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Continuous Dependence on Initial Conditions and Parameter (cont.)

» Theorem 3 also shows continuous dependence on
parameter p in f(t,x,t) if we rewrite the system equations

as:
X =f(t,x, ,
=0 u 0
where L appears as a state variable with initial condition
p(0) = p.

Q: How do you reconcile bifurcations with continuous depen-
dence on parameters? We could pick two values of the bifur-
cation parameter arbitrarily close, but one below and one above
the critical value, thereby expecting a drastic difference in the

solutions.
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» A: The two solutions
are close in the short
term (Theorem 3 holds
on finite time intervals);
the drastic difference
builds up over time.
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Sensitivity to Parame

Consider the system

x=f(t,x,n) xeR" ueckR’ (3)
where  is a vector of p parameters, and let @(¢,xp, 1) denote
the trajectories starting at the initial condition xg.

To determine to what extent this trajectory depends on the pa-
rameters we define the n X p sensitivity matrix:

o 8¢(t,x0,u) _ a(])([,XO,‘LL) a¢(t7x07”)
S(I,XQ,,LL) T a” - 8/.11 a‘up )

where each column is the sensitivity with respect to a particular

parameter.
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Sensitivity to Parameters (cont.)

To see how S(,xp, 1) can be computed numerically, first note

99 (t,x0,
that ¢(z,xo, 1) satisfies the equation (4), that is, S(t,x0,1t) := W
Méxo’” D a0, ).10). _ [0, o,
t ou u ’
Next, differentiate both sides with respect to u: 1 '
¢ (t,xo, ) Of 0(t,x0,) Of
“on (t ¢ (t,x0, 1), N)TﬂLﬁ(t O (2,x0, 1), 1)

» Time-varying system
and use the deflnltlon of the sensitivity matrix to rewrite this as

IS(t,x0,1t) 9 9
(’axzou) af(’¢(txo,u),u)S(t,xo,u)Jra{t(t,d)(t,xo,u),u)' i=f(t,x,u) xER",uER?

(4)

with parameters:
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Sensitivity to Parameters (cont.)

Thus, S can be computed by numerical integration of (4) simul-

99 (t,x0,
taneously with S(t,x0, 1) := M
c_9f A 90 (1, %0, 1) %wz W)
S=—=—(t,x,u)S+=—(t,x,1). _ X0, M) 1 X0,
PMUEND a“( 1) e ok
The initial condition for S is ?ﬁ) =0, assuming that xq is inde-

pendent of the parameters. > Timewarfing sEen

with parameters:

x=f(t,x,p) xeR"ueR’
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Example: For the harmonic oscillator
X1 = —Ux
Xy = Ux
o |0 —up o _|m
ox |p 0 ow | x|’
Thus the sensitivity equation is

s |0 H
u

we have

S+
0
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