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Existence and Uniqueness Theorems for ODEs

ẋ = f (t,x) x(0) = x0

Theorem 1: f (t,x) locally Lipschitz in x and continuous in t
⇒ existence and uniqueness on some finite interval [0,δ ].

Sketch of the proof: From the local Lipschitz assumption, we
can find r > 0 and L > 0 such that

|f (t,x)− f (t,y)| ≤ L|x− y| ∀x,y ∈ {x ∈ Rn : |x− x0| ≤ r}.
From fundamental theorem of calculus, if x(t) is a solution, then:

x(t) = x0 +
∫ t

0
f (τ,x(τ))dτ

︸ ︷︷ ︸
=: T(x)(t)

.
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▶ Recall that local
Lipschitz means for all
x0, there exists L such
that

|f (x)− f (y)| ≤ L|x− y|

for all x,y in a
neighborhood of x0.
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ẋ = f (t,x) x(0) = x0

Theorem 1: f (t,x) locally Lipschitz in x and continuous in t
⇒ existence and uniqueness on some finite interval [0,δ ].
Sketch of the proof: From the local Lipschitz assumption, we
can find r > 0 and L > 0 such that

|f (t,x)− f (t,y)| ≤ L|x− y| ∀x,y ∈ {x ∈ Rn : |x− x0| ≤ r}.
From fundamental theorem of calculus, if x(t) is a solution, then:

x(t) = x0 +
∫ t

0
f (τ,x(τ))dτ

︸ ︷︷ ︸
=: T(x)(t)

.

Lecture 8 Notes – ME6402, Spring 2025 2/14

▶ Recall that local
Lipschitz means for all
x0, there exists L such
that

|f (x)− f (y)| ≤ L|x− y|

for all x,y in a
neighborhood of x0.



Existence and Uniqueness Theorems for ODEs

Sketch of proof (cont.): To apply the Contraction Mapping The-
orem:

1 Choose δ small enough that T maps the following subset
of Cn[0,δ ] to itself :

U = {x ∈ Cn[0,δ ] : |x(t)− x0| ≤ r ∀t ∈ [0,δ ]},
i.e.

|x(t)−x0| ≤ r ∀t∈ [0,δ ] ⇒ |T(x)(t)−x0| ≤ r ∀t∈ [0,δ ].
(1)
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▶

x(t)= x0 +
∫ t

0
f (τ,x(τ))dτ

︸ ︷︷ ︸
=: T(x)(t)

.



Existence and Uniqueness Theorems for ODEs

Sketch of proof (cont.):

1 (Step 1 continued) To find such a δ note that

T(x)(t)− x0 =
∫ t

0
f (τ,x(τ))dτ

=
∫ t

0

(
f (τ,x(τ))− f (τ,x0)+ f (τ,x0)

)
dτ

|T(x)(t)− x0| ≤
∫

δ

0
|f (τ,x(τ))− f (τ,x0)|dτ +

∫
δ

0
|f (τ,x0)|dτ

≤
∫

δ

0
L|x(τ)− x0|dτ +

∫
δ

0
hdτ

≤ (Lr+h)δ .

Thus, by choosing δ ≤ r
Lr+h

we ensure that the

implication (2) holds.
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▶

x(t)= x0 +
∫ t

0
f (τ,x(τ))dτ

︸ ︷︷ ︸
=: T(x)(t)

.

▶

|x(t)− x0| ≤ r∀t ∈ [0,δ ]

⇒ |T(x)(t)− x0| ≤ r

∀t ∈ [0,δ ]. (2)

▶ Let h be a bound on
|f (τ,x0)|



Existence and Uniqueness Theorems for ODEs

Sketch of proof (cont.):

2 Show that T is a contraction in U, i.e., there exists ρ < 1

s.t. x,y ∈ U =⇒ |T(x)−T(y)|C ≤ ρ|x− y|C.
Note that, for all t ∈ [0,δ ],

|T(x)(t)−T(y)(t)|=
∫ t

0
|f (τ,x(τ))− f (τ,y(τ))|dτ

≤ L
∫ t

0
|x(τ)− y(τ)|dτ

≤ Lδ︸︷︷︸
=:ρ

max
τ∈[0,δ ]

|x(τ)− y(τ)|= ρ|x− y|C.

Therefore,
|T(x)−T(y)|C = max

t∈[0,δ ]
|T(x)(t)−T(y)(t)| ≤ ρ|x− y|C and

ρ < 1 if δ ≤ r/(Lr+h) as prescribed above.
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▶ Recall from Lecture 7:
Cn[0,δ ] the set of all
continuous functions
[0,δ ]→ Rn with norm

|x|C = max
t∈[0,δ ]

|x(t)|



Existence for All Time From Global Lipschitzness

Theorem 2: f (t,x) globally Lipschitz in x uniformly in t, and
continuous in t =⇒ existence and uniqueness on [0,∞).

Proof: Choose a δ that doesn’t depend on x0 and apply Theorem
1 repeatedly to cover [0,∞). This is possible because L works
everywhere and we can pick r as large as we wish. Indeed, for

any δ <
1
L

, we can choose r large enough that δ ≤ r
Lr+h

.

Q: Why can’t we do this in Theorem 1?

A: δ depends on x0 (no universal L) and x0 changes at the next
iteration. We can’t use the same δ in every iteration:
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Note that, for all t 2 [0, d],

|T(x)(t) � T(y)(t)| =
Z t

0
| f (t, x(t)) � f (t, y(t))|dt

 L
Z t

0
|x(t) � y(t)|dt

 Ld|{z}
=:r

max
t2[0,d]

|x(t) � y(t)| = r|x � y|C.

Therefore,

|T(x) � T(y)|C = max
t2[0,d]

|T(x)(t) � T(y)(t)|  r|x � y|C

and r < 1 if d  r
Lr+h as prescribed above.

Theorem 2: f (t, x) globally Lipschitz in x uniformly2 in t, and contin- 2 same L works for all t

uous in t =) existence and uniqueness on [0, •).

Proof: Choose a d that doesn’t depend on x0 and apply Theorem 1 re-
peatedly to cover [0, •). This is possible because L works everywhere
and we can pick r as large as we wish. Indeed, for any d < 1

L , we can
choose r large enough that d  r

Lr+h .

Q: Why can’t we do this in Theorem 1?

A: d depends on x0 (no universal L) and x0 changes at the next itera-
tion. We can’t use the same d in every iteration:

t f0 d1 d2 d3

• The theorems above are sufficient only, and can be conservative:

Example: ẋ = �x3 is not globally Lipschitz but

x(t) = sgn(x0)

s
x2

0
1 + 2tx2

0

is defined on [0, •).

Continuous Dependence on Initial Conditions and Parameters

Theorem 3: (Continuous dependence on initial conditions) Let
x(t), y(t) be two solutions of ẋ = f (t, x) starting from x0 and y0,
and remaining in a set with Lipschitz constant L on [0, t]. Then, for
any e > 0, there exists d(e, t) > 0 such that

|x0 � y0|  d =) |x(t) � y(t)|  e 8t 2 [0, t].
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▶ uniformly here means
same L works for all t
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▶ uniformly here means
same L works for all t



Existence and Uniqueness Theorems for ODEs

▶ The theorems above are sufficient only, and can be
conservative:

Example: ẋ =−x3 is not globally Lipschitz but

x(t) = sgn(x0)

√
x2

0

1+2tx2
0

is defined on [0,∞).
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Continuous Dependence on Initial Conditions and Parameters

Theorem 3: (Continuous dependence on initial conditions) Let
x(t),y(t) be two solutions of ẋ = f (t,x) starting from x0 and y0,
and remaining in a set with Lipschitz constant L on [0,τ]. Then,
for any ε > 0, there exists δ (ε,τ)> 0 such that

|x0 − y0| ≤ δ =⇒ |x(t)− y(t)| ≤ ε ∀t ∈ [0,τ].

▶ This conclusion does not hold on infinite time intervals
(even if f is globally Lipschitz).
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Example

Example: bistable system

nonlinear systems—lecture 8 notes 3

• This conclusion does not hold on infinite time intervals (even if f
is globally Lipschitz).

Example: bistable system

x(t)

y(t)

x0 y0
• •

If e is smaller than the distance between the two stable equilibria, no
choice of d guarantees |x(t) � y(t)|  e 8t � 0.

• Theorem 3 also shows continuous dependence on parameter µ in
f (t, x, µ) if we rewrite the system equations as:

ẋ = f (t, x, µ)

µ̇ = 0
X =

"
x
µ

#
Ẋ = F(t, X) ,

"
f (t, x, µ)

0

#
,

where µ appears as a state variable with initial condition µ(0) = µ.

Q: How do you reconcile bifurcations with continuous dependence
on parameters? We could pick two values of the bifurcation param-
eter arbitrarily close, but one below and one above the critical value,
thereby expecting a drastic difference in the solutions.

A: The two solutions are close in the short term (Theorem 3 holds on
finite time intervals); the drastic difference builds up over time.

Sensitivity to Parameters

Consider the system

ẋ = f (t, x, µ) x 2 Rn, µ 2 Rp (3)

where µ is a vector of p parameters, and let f(t, x0, µ) denote the
trajectories starting at the initial condition x0.

To determine to what extent this trajectory depends on the parame-
ters we define the n ⇥ p sensitivity matrix:

S(t, x0, µ) :=
∂f(t, x0, µ)

∂µ
=


∂f(t, x0, µ)

∂µ1
· · · ∂f(t, x0, µ)

∂µp

�
, (4)

If ε is smaller than the distance between the two stable equilibria,
no choice of δ guarantees |x(t)− y(t)| ≤ ε ∀t ≥ 0.

Lecture 8 Notes – ME6402, Spring 2025 9/14



Continuous Dependence on Initial Conditions and Parameter (cont.)

▶ Theorem 3 also shows continuous dependence on
parameter µ in f (t,x,µ) if we rewrite the system equations
as:

ẋ = f (t,x,µ)

µ̇ = 0
X =

[
x
µ

]
Ẋ = F(t,X)≜

[
f (t,x,µ)

0

]
,

where µ appears as a state variable with initial condition
µ(0) = µ .

Q: How do you reconcile bifurcations with continuous depen-
dence on parameters? We could pick two values of the bifur-
cation parameter arbitrarily close, but one below and one above
the critical value, thereby expecting a drastic difference in the
solutions.
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▶ A: The two solutions
are close in the short
term (Theorem 3 holds
on finite time intervals);
the drastic difference
builds up over time.



Sensitivity to Parameters

Consider the system

ẋ = f (t,x,µ) x ∈ Rn,µ ∈ Rp (3)

where µ is a vector of p parameters, and let φ(t,x0,µ) denote
the trajectories starting at the initial condition x0.
To determine to what extent this trajectory depends on the pa-
rameters we define the n×p sensitivity matrix:

S(t,x0,µ) :=
∂φ(t,x0,µ)

∂ µ
=

[
∂φ(t,x0,µ)

∂ µ1
· · · ∂φ(t,x0,µ)

∂ µp

]
,

where each column is the sensitivity with respect to a particular
parameter.
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Sensitivity to Parameters (cont.)

To see how S(t,x0,µ) can be computed numerically, first note
that φ(t,x0,µ) satisfies the equation (4), that is,

∂φ(t,x0,µ)

∂ t
= f (t,φ(t,x0,µ),µ).

Next, differentiate both sides with respect to µ :
∂ 2φ(t,x0,µ)

∂ t∂ µ
=

∂ f
∂x

(t,φ(t,x0,µ),µ)
∂φ(t,x0,µ)

∂ µ
+

∂ f
∂ µ

(t,φ(t,x0,µ),µ)

and use the definition of the sensitivity matrix to rewrite this as
∂S(t,x0,µ)

∂ t
=

∂ f
∂x

(t,φ(t,x0,µ),µ)S(t,x0,µ)+
∂ f
∂ µ

(t,φ(t,x0,µ),µ).
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S(t,x0,µ) :=
∂φ(t,x0,µ)

∂ µ

=

[
∂φ(t,x0,µ)

∂ µ1
· · · ∂φ(t,x0,µ)

∂ µp

]
,

▶ Time-varying system
with parameters:

ẋ= f (t,x,µ) x∈Rn,µ ∈Rp

(4)



Sensitivity to Parameters (cont.)

Thus, S can be computed by numerical integration of (4) simul-
taneously with

Ṡ =
∂ f
∂x

(t,x,µ)S+
∂ f
∂ µ

(t,x,µ).

The initial condition for S is
∂x0

∂ µ
= 0, assuming that x0 is inde-

pendent of the parameters.
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S(t,x0,µ) :=
∂φ(t,x0,µ)

∂ µ

=

[
∂φ(t,x0,µ)

∂ µ1
· · · ∂φ(t,x0,µ)

∂ µp

]
,

▶ Time-varying system
with parameters:

ẋ= f (t,x,µ) x∈Rn,µ ∈Rp



Example

Example: For the harmonic oscillator

ẋ1 = −µx2

ẋ2 = µx1

we have
∂ f
∂x

=

[
0 −µ

µ 0

]
∂ f
∂ µ

=

[
−x2

x1

]
.

Thus the sensitivity equation is

Ṡ =

[
0 −µ

µ 0

]
S+

[
−x2

x1

]
.
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