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Mathematical Background

x=Ff(x)
x(0) = xo
Do solutions exist? Are they unique?

> If £(-) is continuous (C°) then a solution exists, but C is
not sufficient for uniqueness.
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Example: Continuity Does not Imply Uniqueness

Example: x = x3 with x(0)=0

x(t) =0, x(1) = (

W1 N

3
2
t) are both solutions

A x1/3
> X
oo slope
at x=0
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Lipschitz Implies Uniqueness

» Sufficient condition for uniqueness: “Lipschitz continuity”
(more restrictive than C°)

f(x) =) < Llx—y| *)
Definition: f(-) is locally Lipschitz if every point x° has a neigh-

borhood where (*) holds for all x,y in this neighborhood for some
L.
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Example: ()% is NOT locally Lipschitz (due to oo slope)
(-)? is locally Lipschitz:
=y = (@rxy+y?) (x—y)
N
in any nbhd
of % we can
find L to upper
bound this
= ¥ | < Llx—)|
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> If () is continuously differentiable (C'), then it is locally
Lipschitz.

3 ¥, €5, etc.

The converse is not true: local Lipschitz % C!
Example:

Examples: x

Not differentiable at x = 41, but locally Lipschitz:
[sat(x) —sat(y)| < fx—y[  (L=1).
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Cc! — Lipschitz = °
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Global Lipschitz Continuity

Definition continued: f(-) is globally Lipschitz if (*) holds Vx,y €
R”" (i.e., the same L works everywhere). If(x) —fOI <Lix—y[  (*)

Examples: sat(-) is globally Lipschitz. (-)* is not globally Lips-
chitz:

A

— slope getting steeper

////,> > X

» Suppose f(-) is C'. Then it is globally Lipschitz iff gf is
X
bounded.

L =sup|f'(x)|
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Preview of Existence Theorems

® f(-) is C° = existence of solution x(¢) on finite interval

[0,2f).

® f(-) locally Lipschitz = existence and uniqueness on
[0,27).

© f(-) globally Lipschitz = existence and uniqueness on
[0, 00).
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Preview of Existence Theorems (cont.)

Examples:
> & =x? (locally Lipschitz) admits unique solution on [0,7),
but 7 < o from Lecture 1 (finite escape).
> & = Ax globally Lipschitz, therefore no finite escape
|Ax —Ay| < L|x—y| with L=|A]
The rest of the lecture introduces concepts that are used in prov-
ing the existence theorems mentioned above.

Lecture 7 Notes — ME6402, Spring 2025

10/20



Normed Linear Spaces

Definition: X is a normed linear space (also called normed vector
space) if there exists a real-valued norm || satisfying:

O x>0 xeX, |x|=0iffx=0.
@ [x+y| <|x|+]|y| Vx,y€ X (triangle inequality)
© |oax|=|al|-|x| YaeR and x e X.

Lecture 7 Notes — ME6402, Spring 2025 11/20



Normed Linear Spaces

Definition: A sequence {x;} in X is said to be a Cauchy sequence
if

|Xk — Xm| — 0 as k,m — oo,
Every convergent sequence is Cauchy. The converse is not true.
Definition: X is a Banach space if every Cauchy sequence con-
verges to an element in X.

All Euclidean spaces are Banach spaces.
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Example:
C"la,b]: the set of all continuous functions [a,b] — R" with .
norm: —_—
el = max |x(0)] | |
Z‘E[a,b] : > t
a b
® [x|c >0 and |x|c =0 iff x(r) = 0.
© lx-+yle = max Ix(1) +5(0)] < max {+(0)] + b)) < > Normed linear spaces:
t€la,b tela,b
lxle =+ Iyle @ x>0 VxeX, |x=
0iffx=0.
© |a-x|c = max |o|-[x(r)| = |et] - [x]c
1€a,b] @ |x+y| <|x|+]y| Vx,yeX
It can be shown that C"[a,b] is a Banach space. (triangle inequality)
O |ox|=|a| || YaeR
and x € X.
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Fixed Point Theorems

» Completely continuous
T(X) =X means continuous and
Brouwer's Theorem (Euclidean spaces): for any bounded set
B C U the closure of
T(B) is compact

If U is a closed, bounded, convex subset of a Euclidean space
and T: U — U is continuous, then T has a fixed point in U.

Schauder’s Theorem (Brouwer's Thm — Banach spaces):
If U is a closed bounded convex subset of a Banach space X and

T:U — U is completely continuous, then T has a fixed point in
U.
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Fixed Point Theorems

Contraction Mapping Theorem:

If Uis a closed subset of a Banach space and T: U — U is such
that

T(x) =Ty <plx—yl p<1 Vx,yeU
then T has a unique fixed point in U and the solutions of x,, | =
T(x,) converge to this fixed point from any xp € U.
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Contraction Mapping Example

Example: The logistic map (Lecture 5) > Contraction property:
T(x) =rx(1—x)

with 0 <r <4 maps U=1[0,1] to U. |T'(x)| <r Vxe€]0,1], so

the contraction property holds with p =r.

|T(x) =T(y)| < plx—y]|
Vx,y e U

A

r/41------=

o
—_
A 4
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Contraction Mapping Example (cont.)

If r < 1, the contraction mapping theorem predicts a unique fixed > Logistic Map:
point that attracts all solutions starting in [0, 1]. T(x) = rx(1—x)
N

» Contraction mapping
theorem condition:

|T(x)=T(y)| < plx—y]|
p<l, Vx,yeU
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Contraction Mapping Theorem Proof

Proof steps for the Contraction Mapping Thm: Contraction Mapping Theorem:

. If U is a closed subset of a
® Show that {x,} formed by x,+; = T(x,) is a Cauchy Banach space and T: U > U

sequence. Since we are in a Banach space, this implies a is such that

limit x* exists.

® Show that x* =T(x").

IT(x) =T()| < plx—y|
p<l1 Vx,yeU

® Show that x* is unique. , ,
then T has a unique fixed

point in U and the solutions of
X1 = T(x,) converge to this
fixed point from any xy € U.
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Contraction Mapping Theorem Proof

Details of each step: @ Show that {x,} formed
by x,+1 =T(x,) is a

o 1 =Xl = [T (xn) = T(xn—1)| < plon — Xn—1] .
5 Cauchy sequence. Since
< P |xp—1 — Xn—2| we are in a Banach
space, this implies a
limit x* exists.
< p"x1 —xol- @ Show that x* = T'(x").
Xntr — Xn| < |Xnr — Xngr—1 |+ 4 [Xnp1 — Xn] © Show that x* is unique.

< (P" 44 p")x1 — X0
=p"(L+--+p")lx1 —xo

Spnl—p’xl — Xo|

n

— 0 as n — oo, we have |x,4, —x,| — 0.

S
Ince 1
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Contraction Mapping Theorem Proof

Details of each step: @ Show that {x,} formed
® |6 = T(")| = 5" = %0+ Ty 1) = T(x") o it~ T 153
Cauchy sequence. Since
* *
< ]x —xn‘—HT(Xn—l)—TX )’ we are in a Banach

< |x* _xn| +p‘x* _xn_1|. space, this implies a

Since {x,} converges to x*, we can make this upper bound
arbitrarily small by choosing n sufficiently large. This
means that |x* — T'(x*)| =0, hence x* = T(x").
© Suppose y" =T(y") y" #x".
=y =TE) =TON)| < pl =y = x" =y~

Thus we have a contradiction.

limit x* exists.
@® Show that x* =T(x¥).

© Show that x* is unique.
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