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Mathematical Background

ẋ = f (x)

x(0) = x0

Do solutions exist? Are they unique?

▶ If f (·) is continuous (C0) then a solution exists, but C0 is
not sufficient for uniqueness.
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Example: Continuity Does not Imply Uniqueness

Example: ẋ = x
1
3 with x(0) = 0

x(t)≡ 0, x(t) =
(

2
3

t
) 3

2

are both solutions
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Mathematical Background
Sastry, Chapter 3

ẋ = f (x) x(0) = x0 (1)

Do solutions exist? Are they unique?

• If f (·) is continuous (C0) then a solution exists, but C0 is not suffi-
cient for uniqueness.

Example: ẋ = x
1
3 with x(0) = 0

x(t) ⌘ 0, x(t) =

✓
2
3

t
◆ 3

2
are both solutions

x

x1/3

• slope
at x=0

• Sufficient condition for uniqueness: “Lipschitz continuity” (more
restrictive than C0)

| f (x) � f (y)|  L|x � y| (2)

Definition: f (·) is locally Lipschitz if every point x0 has a neighbor-
hood where (2) holds for all x, y in this neighborhood for some L.

Example: (·) 1
3 is NOT locally Lipschitz (due to • slope)

(·)3 is locally Lipschitz:

x3 � y3 = (x2 + xy + y2)| {z }
in any nbhd
of x0, we can
find L to upper
bound this

(x � y)

=) |x3 � y3|  L|x � y|

• If f (·) is continuously differentiable (C1), then it is locally Lips-
chitz.
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Lipschitz Implies Uniqueness

▶ Sufficient condition for uniqueness: “Lipschitz continuity”
(more restrictive than C0)

|f (x)− f (y)| ≤ L|x− y| (*)

Definition: f (·) is locally Lipschitz if every point x0 has a neigh-
borhood where (*) holds for all x,y in this neighborhood for some
L.
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Example

Example: (·) 1
3 is NOT locally Lipschitz (due to ∞ slope)

(·)3 is locally Lipschitz:

x3 − y3 = (x2 + xy+ y2)︸ ︷︷ ︸
in any nbhd
of x0, we can
find L to upper
bound this

(x− y)

=⇒ |x3 − y3| ≤ L|x− y|
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Lipschitz vs. C1

▶ If f (·) is continuously differentiable (C1), then it is locally
Lipschitz.

Examples: x3,x2,ex, etc.
The converse is not true: local Lipschitz ̸⇒ C1

Example:
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Examples: x3, x2, ex, etc.

The converse is not true: local Lipschitz 6) C1

Example:

x

sat(x)

�1

1
�1

1

Not differentiable at x = ⌥1, but locally Lipschitz:

| sat(x) � sat(y)|  |x � y| (L = 1).

L
C0

C1

x1/3

sat(x)

x2, x3, ...

Definition continued: f (·) is globally Lipschitz if (2) holds 8x, y 2 Rn

(i.e., the same L works everywhere).

Examples: sat(·) is globally Lipschitz. (·)3 is not globally Lipschitz:

x

! slope getting steeper

• Suppose f (·) is C1. Then it is globally Lipschitz iff ∂ f
∂x is bounded.

L = sup
x

| f 0(x)|

Not differentiable at x =±1, but locally Lipschitz:

|sat(x)− sat(y)| ≤ |x− y| (L = 1).
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C1 =⇒ Lipschitz =⇒ C0
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Examples: x3, x2, ex, etc.

The converse is not true: local Lipschitz 6) C1

Example:

x

sat(x)

�1

1
�1

1

Not differentiable at x = ⌥1, but locally Lipschitz:

| sat(x) � sat(y)|  |x � y| (L = 1).

L
C0

C1

x1/3

sat(x)

x2, x3, ...

Definition continued: f (·) is globally Lipschitz if (2) holds 8x, y 2 Rn

(i.e., the same L works everywhere).

Examples: sat(·) is globally Lipschitz. (·)3 is not globally Lipschitz:

x

! slope getting steeper

• Suppose f (·) is C1. Then it is globally Lipschitz iff ∂ f
∂x is bounded.

L = sup
x

| f 0(x)|
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Global Lipschitz Continuity

Definition continued: f (·) is globally Lipschitz if (*) holds ∀x,y ∈
Rn (i.e., the same L works everywhere).

Examples: sat(·) is globally Lipschitz. (·)3 is not globally Lips-
chitz:
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Examples: x3, x2, ex, etc.

The converse is not true: local Lipschitz 6) C1

Example:

x

sat(x)

�1

1
�1

1

Not differentiable at x = ⌥1, but locally Lipschitz:

| sat(x) � sat(y)|  |x � y| (L = 1).

L
C0

C1

x1/3

sat(x)

x2, x3, ...

Definition continued: f (·) is globally Lipschitz if (2) holds 8x, y 2 Rn

(i.e., the same L works everywhere).

Examples: sat(·) is globally Lipschitz. (·)3 is not globally Lipschitz:

x

! slope getting steeper

• Suppose f (·) is C1. Then it is globally Lipschitz iff ∂ f
∂x is bounded.

L = sup
x

| f 0(x)|

▶ Suppose f (·) is C1. Then it is globally Lipschitz iff
∂ f
∂x

is

bounded.
L = sup

x
|f ′(x)|
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|f (x)− f (y)| ≤ L|x− y| (*)



Preview of Existence Theorems

1 f (·) is C0 =⇒ existence of solution x(t) on finite interval
[0, tf ).

2 f (·) locally Lipschitz =⇒ existence and uniqueness on
[0, tf ).

3 f (·) globally Lipschitz =⇒ existence and uniqueness on
[0,∞).
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Preview of Existence Theorems (cont.)

Examples:

▶ ẋ = x2 (locally Lipschitz) admits unique solution on [0, tf ),
but tf < ∞ from Lecture 1 (finite escape).

▶ ẋ = Ax globally Lipschitz, therefore no finite escape

|Ax−Ay| ≤ L|x− y| with L = ∥A∥
The rest of the lecture introduces concepts that are used in prov-
ing the existence theorems mentioned above.
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Normed Linear Spaces

Definition: X is a normed linear space (also called normed vector
space) if there exists a real-valued norm | · | satisfying:

1 |x| ≥ 0 ∀x ∈ X, |x|= 0 iff x = 0.

2 |x+ y| ≤ |x|+ |y| ∀x,y ∈ X (triangle inequality)

3 |αx|= |α| · |x| ∀α ∈ R and x ∈ X.
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Normed Linear Spaces

Definition: A sequence {xk} in X is said to be a Cauchy sequence
if

|xk − xm| → 0 as k,m → ∞.

Every convergent sequence is Cauchy. The converse is not true.
Definition: X is a Banach space if every Cauchy sequence con-
verges to an element in X.
All Euclidean spaces are Banach spaces.
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Example

Example:
Cn[a,b]: the set of all continuous functions [a,b] → Rn with
norm:

|x|C = max
t∈[a,b]

|x(t)|

1 |x|C ≥ 0 and |x|C = 0 iff x(t)≡ 0.

2 |x+ y|C = max
t∈[a,b]

|x(t)+ y(t)| ≤ max
t∈[a,b]

{|x(t)|+ |y(t)|} ≤
|x|C + |y|C

3 |α · x|C = max
t∈[a,b]

|α| · |x(t)|= |α| · |x|C

It can be shown that Cn[a,b] is a Banach space.
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Preview of existence theorems:

1. f (·) is C0 =) existence of solution x(t) on finite interval [0, t f ).

2. f (·) locally Lipschitz =) existence and uniqueness on [0, t f ).

3. f (·) globally Lipschitz =) existence and uniqueness on [0, •).

Examples:

• ẋ = x2 (locally Lipschitz) admits unique solution on [0, t f ), but
t f < • from Lecture 1 (finite escape).

• ẋ = Ax globally Lipschitz, therefore no finite escape

|Ax � Ay|  L|x � y| with L = kAk

The rest of the lecture introduces concepts that are used in proving the
existence theorems mentioned above.

Normed Linear Spaces

Definition: X is a normed linear space if there exists a real-valued
norm | · | satisfying:

1. |x| � 0 8x 2 X, |x| = 0 iff x = 0.

2. |x + y|  |x| + |y| 8x, y 2 X (triangle inequality)

3. |ax| = |a| · |x| 8a 2 R and x 2 X.

Definition: A sequence {xk} in X is said to be a Cauchy sequence if

|xk � xm| ! 0 as k, m ! •. (3)

Every convergent sequence is Cauchy. The converse is not true.

Definition: X is a Banach space if every Cauchy sequence converges
to an element in X.

All Euclidean spaces are Banach spaces.

Example:

Cn[a, b]: the set of all continuous functions [a, b] ! Rn with norm:

|x|C = max
t2[a,b]

|x(t)|

t
ba

x

1. |x|C � 0 and |x|C = 0 iff x(t) ⌘ 0.

▶ Normed linear spaces:

1 |x| ≥ 0 ∀x ∈ X, |x|=
0 iff x = 0.

2 |x+y| ≤ |x|+ |y| ∀x,y∈X
(triangle inequality)

3 |αx|= |α| · |x| ∀α ∈ R
and x ∈ X.



Fixed Point Theorems

T(x) = x
Brouwer’s Theorem (Euclidean spaces):
If U is a closed, bounded, convex subset of a Euclidean space
and T : U → U is continuous, then T has a fixed point in U.

Schauder’s Theorem (Brouwer’s Thm → Banach spaces):
If U is a closed bounded convex subset of a Banach space X and
T : U → U is completely continuous, then T has a fixed point in
U.
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▶ Completely continuous
means continuous and
for any bounded set
B ⊆ U the closure of
T(B) is compact



Fixed Point Theorems

Contraction Mapping Theorem:
If U is a closed subset of a Banach space and T : U → U is such
that

|T(x)−T(y)| ≤ ρ|x− y| ρ < 1 ∀x,y ∈ U
then T has a unique fixed point in U and the solutions of xn+1 =

T(xn) converge to this fixed point from any x0 ∈ U.
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Contraction Mapping Example

Example: The logistic map (Lecture 5)

T(x) = rx(1− x)

with 0 ≤ r ≤ 4 maps U = [0,1] to U. |T ′(x)| ≤ r ∀x ∈ [0,1], so
the contraction property holds with ρ = r.

nonlinear systems—lecture 7 notes 4

2. |x + y|C = max
t2[a,b]

|x(t) + y(t)|  max
t2[a,b]

{|x(t)| + |y(t)|}  |x|C + |y|C

3. |a · x|C = max
t2[a,b]

|a| · |x(t)| = |a| · |x|C

It can be shown that Cn[a, b] is a Banach space.

Fixed Point Theorems

T(x) = x (4)

Brouwer’s Theorem (Euclidean spaces):

If U is a closed, bounded, convex subset of a Euclidean space and
T : U ! U is continuous, then T has a fixed point in U.

Schauder’s Theorem (Brouwer’s Thm ! Banach spaces):

If U is a closed bounded convex subset of a Banach space X and
T : U ! U is completely continuous2, then T has a fixed point in U. 2 continuous and for any bounded set

B ✓ U the closure of T(B) is compact
Contraction Mapping Theorem:

If U is a closed subset of a Banach space and T : U ! U is such that

|T(x) � T(y)|  r|x � y| r < 1 8x, y 2 U

then T has a unique fixed point in U and the solutions of xn+1 =

T(xn) converge to this fixed point from any x0 2 U.

Example: The logistic map (Lecture 5)

T(x) = rx(1 � x) (5)

with 0  r  4 maps U = [0, 1] to U. |T0(x)|  r 8x 2 [0, 1], so the
contraction property holds with r = r.

x

r/4

0 1

If r < 1, the contraction mapping theorem predicts a unique fixed
point that attracts all solutions starting in [0, 1].
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▶ Contraction property:

|T(x)−T(y)| ≤ ρ|x− y|
∀x,y ∈ U



Contraction Mapping Example (cont.)

If r < 1, the contraction mapping theorem predicts a unique fixed
point that attracts all solutions starting in [0,1].
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x

Proof steps for the Contraction Mapping Thm:

1. Show that {xn} formed by xn+1 = T(xn) is a Cauchy sequence.
Since we are in a Banach space, this implies a limit x⇤ exists.

2. Show that x⇤ = T(x⇤).

3. Show that x⇤ is unique.

Details of each step:

1. |xn+1 � xn| = |T(xn) � T(xn�1)|  r|xn � xn�1|
 r2|xn�1 � xn�2|

...

 rn|x1 � x0|.

|xn+r � xn|  |xn+r � xn+r�1| + · · · + |xn+1 � xn|
 (rn+r + · · · + rn)|x1 � x0|
= rn(1 + · · · + rr)|x1 � x0|

 rn 1
1 � r

|x1 � x0|

Since rn

1�r ! 0 as n ! •, we have |xn+r � xn| ! 0 as n ! •.

2. |x⇤ � T(x⇤)| = |x⇤ � xn + T(xn�1) � T(x⇤)|
 |x⇤ � xn| + |T(xn�1) � T(x⇤)|
 |x⇤ � xn| + r|x⇤ � xn�1|.

Since {xn} converges to x⇤, we can make this upper bound ar-
bitrarily small by choosing n sufficiently large. This means that
|x⇤ � T(x⇤)| = 0, hence x⇤ = T(x⇤).

3. Suppose y⇤ = T(y⇤) y⇤ 6= x⇤.

|x⇤ � y⇤| = |T(x⇤) � T(y⇤)|  r|x⇤ � y⇤| =) x⇤ = y⇤.

Thus we have a contradiction.
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▶ Logistic Map:

T(x) = rx(1− x)

▶ Contraction mapping
theorem condition:

|T(x)−T(y)| ≤ ρ|x− y|
ρ < 1, ∀x,y ∈ U



Contraction Mapping Theorem Proof

Proof steps for the Contraction Mapping Thm:

1 Show that {xn} formed by xn+1 = T(xn) is a Cauchy
sequence. Since we are in a Banach space, this implies a
limit x∗ exists.

2 Show that x∗ = T(x∗).

3 Show that x∗ is unique.
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Contraction Mapping Theorem:
If U is a closed subset of a
Banach space and T : U → U
is such that

|T(x)−T(y)| ≤ ρ|x− y|
ρ < 1 ∀x,y ∈ U

then T has a unique fixed
point in U and the solutions of
xn+1 = T(xn) converge to this
fixed point from any x0 ∈ U.



Contraction Mapping Theorem Proof

Details of each step:

1 |xn+1 − xn|= |T(xn)−T(xn−1)| ≤ ρ|xn − xn−1|
≤ ρ

2|xn−1 − xn−2|
...

≤ ρ
n|x1 − x0|.

|xn+r − xn| ≤ |xn+r − xn+r−1|+ · · ·+ |xn+1 − xn|
≤ (ρn+r + · · ·+ρ

n)|x1 − x0|
= ρ

n(1+ · · ·+ρ
r)|x1 − x0|

≤ ρ
n 1

1−ρ
|x1 − x0|

Since
ρn

1−ρ
→ 0 as n → ∞, we have |xn+r − xn| → 0.
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1 Show that {xn} formed
by xn+1 = T(xn) is a
Cauchy sequence. Since
we are in a Banach
space, this implies a
limit x∗ exists.

2 Show that x∗ = T(x∗).

3 Show that x∗ is unique.



Contraction Mapping Theorem Proof

Details of each step:

2 |x∗−T(x∗)|= |x∗− xn +T(xn−1)−T(x∗)|
≤ |x∗− xn|+ |T(xn−1)−T(x∗)|
≤ |x∗− xn|+ρ|x∗− xn−1|.

Since {xn} converges to x∗, we can make this upper bound
arbitrarily small by choosing n sufficiently large. This
means that |x∗−T(x∗)|= 0, hence x∗ = T(x∗).

3 Suppose y∗ = T(y∗) y∗ ̸= x∗.

|x∗− y∗|= |T(x∗)−T(y∗)| ≤ ρ|x∗− y∗| =⇒ x∗ = y∗.

Thus we have a contradiction.
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1 Show that {xn} formed
by xn+1 = T(xn) is a
Cauchy sequence. Since
we are in a Banach
space, this implies a
limit x∗ exists.

2 Show that x∗ = T(x∗).

3 Show that x∗ is unique.


