Lecture 7 – ME6402, Spring 2025 Mathematical Background

Maegan Tucker

January 28, 2025

Goals of Lecture 7

- Existence and uniqueness of ODEs
- Lipschitz continuity
- Normed linear spaces
- Fixed point theorems
- Contraction mappings

Additional Reading

- Sastry, Chapter 3
- Khalil, Chapter 3 and Appendix B

These slides are derived from notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Mathematical Background

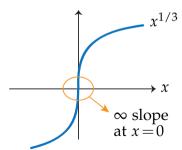
$$\dot{x} = f(x)$$
$$x(0) = x_0$$

Do solutions exist? Are they unique?

▶ If $f(\cdot)$ is continuous (C^0) then a solution exists, but C^0 is not sufficient for uniqueness.

Example: Continuity Does not Imply Uniqueness

Example:
$$\dot{x} = x^{\frac{1}{3}}$$
 with $x(0) = 0$
$$x(t) \equiv 0, \ x(t) = \left(\frac{2}{3}t\right)^{\frac{3}{2}}$$
 are both solutions



Lipschitz Implies Uniqueness

Sufficient condition for uniqueness: "Lipschitz continuity" (more restrictive than C^0)

$$|f(x) - f(y)| \le L|x - y| \tag{*}$$

<u>Definition</u>: $f(\cdot)$ is *locally Lipschitz* if every point x^0 has a neighborhood where (*) holds for all x, y in this neighborhood for some L.

Example

Example: $(\cdot)^{\frac{1}{3}}$ is NOT locally Lipschitz (due to ∞ slope) $(\cdot)^3$ is locally Lipschitz:

$$x^{3}-y^{3} = \underbrace{(x^{2}+xy+y^{2})}_{\text{in any nbhd}} (x-y)$$
in any nbhd
of x^{0} , we can
find L to upper
bound this
$$\implies |x^{3}-y^{3}| \leq L|x-y|$$

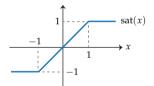
Lipschitz vs. C^1

▶ If $f(\cdot)$ is continuously differentiable (C^1), then it is locally Lipschitz.

Examples: x^3, x^2, e^x , etc.

The converse is not true: local Lipschitz $\not\Rightarrow C^1$

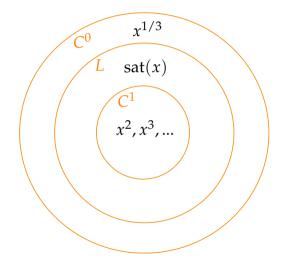
Example:



Not differentiable at $x = \pm 1$, but locally Lipschitz:

$$|\operatorname{sat}(x) - \operatorname{sat}(y)| \le |x - y| \qquad (L = 1).$$

$C^1 \Longrightarrow \mathsf{Lipschitz} \Longrightarrow C^0$

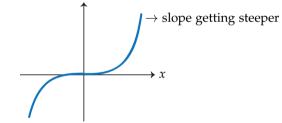


Global Lipschitz Continuity

<u>Definition continued:</u> $f(\cdot)$ is *globally Lipschitz* if (*) holds $\forall x, y \in$

 \mathbb{R}^n (i.e., the same L works everywhere).

Examples: $sat(\cdot)$ is globally Lipschitz. $(\cdot)^3$ is not globally Lipschitz:



Suppose $f(\cdot)$ is C^1 . Then it is globally Lipschitz iff $\frac{\partial f}{\partial x}$ is bounded.

$$L = \sup_{x} |f'(x)|$$

 $|f(x) - f(y)| \le L|x - y|$ (*)

Preview of Existence Theorems

- $f(\cdot)$ is $C^0 \Longrightarrow$ existence of solution x(t) on finite interval $[0,t_f)$.
- $\textbf{ 3} \ f(\cdot) \ \text{globally Lipschitz} \Longrightarrow \text{existence and uniqueness on } [0,\infty).$

Preview of Existence Theorems (cont.)

Examples:

- ▶ $\dot{x} = x^2$ (locally Lipschitz) admits unique solution on $[0, t_f)$, but $t_f < \infty$ from Lecture 1 (finite escape).
- ightharpoonup $\dot{x} = Ax$ globally Lipschitz, therefore no finite escape

$$|Ax - Ay| \le L|x - y|$$
 with $L = ||A||$

The rest of the lecture introduces concepts that are used in proving the existence theorems mentioned above.

Normed Linear Spaces

<u>Definition:</u> \mathbb{X} is a normed linear space (also called normed vector space) if there exists a real-valued norm $|\cdot|$ satisfying:

- 2 $|x+y| \le |x| + |y| \quad \forall x, y \in \mathbb{X}$ (triangle inequality)

Normed Linear Spaces

<u>Definition:</u> A sequence $\{x_k\}$ in $\mathbb X$ is said to be a Cauchy sequence if

$$|x_k - x_m| \to 0$$
 as $k, m \to \infty$.

Every convergent sequence is Cauchy. The converse is not true.

<u>Definition:</u> \mathbb{X} is a Banach space if every Cauchy sequence converges to an element in \mathbb{X} .

All Euclidean spaces are Banach spaces.

Example

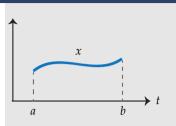
Example:

 $C^n[a,b]$: the set of all continuous functions $[a,b] \to \mathbb{R}^n$ with norm:

$$|x|_C = \max_{t \in [a,b]} |x(t)|$$

- **1** $|x|_C \ge 0$ and $|x|_C = 0$ iff $x(t) \equiv 0$.
- $|x+y|_C = \max_{t \in [a,b]} |x(t)+y(t)| \le \max_{t \in [a,b]} \{|x(t)|+|y(t)|\} \le |x|_C + |y|_C$

It can be shown that $C^n[a,b]$ is a Banach space.



- Normed linear spaces:
- $|x| \ge 0 \quad \forall x \in \mathbb{X}, \quad |x| = 0$

and $x \in \mathbb{X}$.

- 2 $|x+y| \le |x| + |y| \quad \forall x, y \in \mathbb{X}$ (triangle inequality)

Lecture 7 Notes - ME6402, Spring 2025

Fixed Point Theorems

$$T(x) = x$$

Brouwer's Theorem (Euclidean spaces):

If U is a closed, bounded, convex subset of a Euclidean space and $T: U \to U$ is continuous, then T has a fixed point in U.

Schauder's Theorem (Brouwer's Thm \to Banach spaces): If U is a closed bounded convex subset of a Banach space $\mathbb X$ and $T:U\to U$ is completely continuous, then T has a fixed point in U.

Completely continuous means continuous and for any bounded set $B \subseteq U$ the closure of T(B) is compact

Fixed Point Theorems

Contraction Mapping Theorem:

If U is a closed subset of a Banach space and $T:U\to U$ is such that

$$|T(x) - T(y)| \le \rho |x - y| \quad \rho < 1 \quad \forall x, y \in U$$

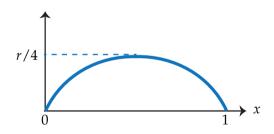
then T has a <u>unique</u> fixed point in U and the solutions of $x_{n+1} = T(x_n)$ converge to this fixed point from any $x_0 \in U$.

Contraction Mapping Example

Example: The logistic map (Lecture 5)

$$T(x) = rx(1-x)$$

with $0 \le r \le 4$ maps U = [0,1] to U. $|T'(x)| \le r \quad \forall x \in [0,1]$, so the contraction property holds with $\rho = r$.



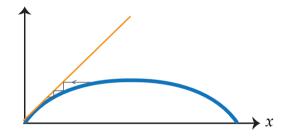
Contraction property:

$$|T(x) - T(y)| \le \rho |x - y|$$

 $\forall x, y \in U$

Contraction Mapping Example (cont.)

If r < 1, the contraction mapping theorem predicts a unique fixed point that attracts all solutions starting in [0,1].



Logistic Map:

$$T(x) = rx(1-x)$$

Contraction mapping theorem condition:

$$|T(x) - T(y)| \le \rho |x - y|$$

 $\rho < 1, \quad \forall x, y \in U$

Contraction Mapping Theorem Proof

Proof steps for the Contraction Mapping Thm:

- **1** Show that $\{x_n\}$ formed by $x_{n+1} = T(x_n)$ is a Cauchy sequence. Since we are in a Banach space, this implies a limit x^* exists.
- **2** Show that $x^* = T(x^*)$.
- **3** Show that x^* is unique.

Contraction Mapping Theorem: If U is a closed subset of a

Banach space and $T:U\to U$ is such that

$$|T(x) - T(y)| \le \rho |x - y|$$
$$\rho < 1 \quad \forall x, y \in U$$

then T has a <u>unique</u> fixed point in U and the solutions of $x_{n+1} = T(x_n)$ converge to this fixed point from any $x_0 \in U$.

Contraction Mapping Theorem Proof

Details of each step:

$$|x_{n+1} - x_n| = |T(x_n) - T(x_{n-1})| \le \rho |x_n - x_{n-1}|$$

 $\le \rho^2 |x_{n-1} - x_{n-2}|$

$$\leq \rho^n |x_1 - x_0|.$$

$$|x_{n+r} - x_n| \le |x_{n+r} - x_{n+r-1}| + \dots + |x_{n+1} - x_n|$$

$$\le (\rho^{n+r} + \dots + \rho^n)|x_1 - x_0|$$

$$= \rho^n (1 + \dots + \rho^r)|x_1 - x_0|$$

$$\leq \rho^n \frac{1}{1-\rho} |x_1 - x_0|$$

Since
$$\frac{\rho^n}{1-\rho} \to 0$$
 as $n \to \infty$, we have $|x_{n+r} - x_n| \to 0$.

- Show that $\{x_n\}$ formed by $x_{n+1} = T(x_n)$ is a Cauchy sequence. Since we are in a Banach space, this implies a
- **2** Show that $x^* = T(x^*)$.

limit x^* exists.

3 Show that x^* is unique.

Contraction Mapping Theorem Proof

Details of each step:

$$|x^* - T(x^*)| = |x^* - x_n + T(x_{n-1}) - T(x^*)|$$

$$\leq |x^* - x_n| + |T(x_{n-1}) - T(x^*)|$$

$$\leq |x^* - x_n| + \rho |x^* - x_{n-1}|.$$

Since $\{x_n\}$ converges to x^* , we can make this upper bound arbitrarily small by choosing n sufficiently large. This means that $|x^* - T(x^*)| = 0$, hence $x^* = T(x^*)$.

3 Suppose $y^* = T(y^*)$ $y^* \neq x^*$. $|x^* - y^*| = |T(x^*) - T(y^*)| \le \rho |x^* - y^*| \implies x^* = y^*.$

Thus we have a contradiction.

- **1** Show that $\{x_n\}$ formed by $x_{n+1} = T(x_n)$ is a Cauchy sequence. Since we are in a Banach space, this implies a limit x^* exists.
- **2** Show that $x^* = T(x^*)$.
- **3** Show that x^* is unique.