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Center Manifold Theory

k=f() f(0)=0

has k eigenvalues will zero real parts, and

)
Suppose A £

x|, o
m = n —k eigenvalues with negative real parts.
Define [ Y ] = Tx such that
z

TAT ' =

A 0
0 A

> eigenvalues of A; have zero real parts, and

where

> eigenvalues of A, have negative real parts.
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Center Manifold Theory

Rewrite X = f(x) in the new coordinates:

y=A1y+g1(y,2) [y]=Tx

z
.4
) z=Axz+g(y,2) o [a o
where 0 A,
> £(0,0)=0
> agl (0 0) 0, » Eigenvalues of A; have
ay zero real parts
‘?981 (0,0)=0, i=1,2. » Eigenvalues of A, have

negative real parts
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Center Manifold Theory

Theorem 1: There exists an invariant manifold z = h(y) defined

in a neighborhood of the origin such that

h(0) =0 %(0) =0.

(i
e

z=nh(y) is called a center manifold in this case.

‘ Reduced System: y=A1y+gi1(y,h(y)) y€ R
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> Rewrite X =f(x) in the

new coordinates:

y=Ay+e1(y,2)
z=Az+82(v,2)

£i(0,0) =0,
dgi _
Ty(o’o) =0,

dgi L
872(070) —0, 1= 1,2
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Center Manifold Theory

Theorem 2: If y =0 is asymptotically stable (resp., unstable) for > Reduced System: y =

the reduced system, then x = 0 is asymptotically stable (resp., Ay+1(,h(y) yeR
unstable) for the full system & = f(x).
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Characterizing the Center Manifold

Define w 2 z— h(y) and note that it satisfies

oh
w=Az+g(y,2) — Iy (A1y+g1(y,z))-

The invariance of z=h(y) means that w=0 implies w=0. Thus,
the expression above must vanish when we substitute z = h(y):

Aah()+ 205:h0) ~ G (Ary-+1026))) =0.

To find h(y) solve this partial differential equation for 4 as a

function on y.
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Characterizing the Center Manifold

If the exact solution is unavailable, an approximation might be
sufficient.
For scalar y, expand h(y) as

h(y) = hoy® + -+ hpy” + O("*)

where hy = hp = 0 because h(0) = zh(O) = 0. The notation
y
O(y**1) refers to the higher order terms of power p+1 and

above.
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Example: y=yz » Transformed system:
t=—z+ay’® a#0
This is of the form at right with g(y,z) = yz, g2(3,2) = ay*,
Ay = —1. Thus h(y) must satisfy
() + 0 — Gh() =0,
Try h(y) = hay* +0():

y=A1y+g1(y,2)
t=Az+g(y,2)

» h must satisfy:

Arh(y) +g2(y,h(y))

- 3—;1 (A1y+g1 ()’»h()’))) =0

Lecture 6 Notes — ME6402, Spring 2025 8/22



Example: y=yz

t=—z+ay? a#0
This is of the form at right with g(y,z) = yz, g2(3,2) = ay*,
Ay = —1. Thus h(y) must satisfy

() + 0 — Gh() =0,
Try h(y) = hoy* + 0(°):
0= —hy’ +0(°) +ay’ — (2hay+ 0(3*))y(hay* + O(y?))
= (a—h)y*+0(y")
—Mhh=a
Reduced System: y = y(ay> + 0(y*)) = ay® + O(y*).

If a <0, the full systems is asymptotically stable. If @ > 0 un-

stable.
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» Transformed system:
y=A1y+81(.2)

t=Az+g(y,2)

» h must satisfy:

Arh(y) +g2(y,h(y))

- 3—;1 (A1y+g1 ()’»h()’))) =0
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Discrete-Time Models and a Chaos Example

CT: x(r) =f(x(r))
J(x") =0

S/

Asymptotic stability criterion:

RA(A) <0 where A= % .

f/(x*) <0 for first order system
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DT: xyt1=f(x,) n=0,1,2,...
F(x*)=x" (“fixed point”)

v

Asymptotic stability criterion:
d

4(A)] < 1 where a2 Y
dx x=x*

[f'(x*)] < 1 for first order system
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Cobweb Diagrams for First Order Discrete-Time Systems

These criteria are inconclusive if the respective inequality is not
strict, but for first order systems we can determine stability
graphically using a cobweb diagram
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Cobweb Diagrams for First Order Discrete-Time Systems

Example: x,+1 = sin(x,) has unique fixed point at 0. Stability
test above inconclusive since f/(0) = 1. However, the "cobweb"

diagram below illustrates the convergence of iterations to 0:
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Oscillations in Discrete-Time Systems

In discrete time, even first order systems can exhibit oscillations:

f(x) Xn

o CHTITITIT

=
= ---
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Detecting Cycles Analytically

fp)=q fla)=p = f(fp)=p f(fl@)=q

» For the existence of a period-2 cycle, the map f(f(-)) must
have two fixed points in addition to the fixed points of f(-).

» Period-3 cycles: fixed points of f(f(f(+))).
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Chaos in a Discrete Time Logistic Growth Model

Xn+1 = r(l _xn)xn

Range of interest: 0 <x<1 (x,>1 = x,11 <0)
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Chaos in a Discrete Time Logistic Growth Model

We will study the range 0 < r <4 so that f(x) = r(1 —x)x maps

Xpa1 = r(1—x,)x,
[0,1] onto itself.

xX*=0 and
Fixed points: x=r(l —x)x = 1
P ( ) XF=1—=ifr>1.
r
r <1: x* =0 unique and stable fixed point

h}x

0 1
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Chaos in a Discrete Time Logistic Growth Model

r>1: x=0 unstable because f'(0) =r>1 St = F(1— 0
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Chaos in a Discrete Time Logistic Growth Model

Note that a transcritical bifurcation occurred at r = 1, creating

o Xpa1 = r(1—x,)x,
the new equilibrium

1

X'=1--.
r
Evaluate its stability using f'(x*) = r(1 —2x*) =2 —r.
r<3 = |f'(x")] <1 (stable)
r>3 = |f'(x*)] >1 (unstable).
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Chaos in a Discrete Time Logistic Growth Model

At r =3, a period-2 cycle is born:
x=f(f(x))
=r(1—f(x))f (x)
=r(l—r(1—x)x)r(1 —x)x
=rx(1=x)(1 —r+rc—rx?)

0=r*x(1-x)(1—r4+r—rn?)—x

X1 = r(1—x,)x,

Factor out x and (x— 14 —), find the roots of the quotient:
r

_rH1IFV(r=3)(r+ 1)
2r

p,q
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Chaos in a Discrete Time Logistic Growth Model

A }/ = X
X1 = r(1—xp)x,

_ r+1F/(r=3)(r+1)
2r

p,q

A4
=
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Chaos in a Discrete Time Logistic Growth Model

This period-2 cycle is stable when r < 1+ V6 = 3.4494-
d , , o
S| =P U 0) =F (o) (q) =4+ 20—

x=p
44+2r =2 <1 = 3<r<1+V6=23449%
At r = 3.4494, a period-4 cycle is born!

Xpa1 = r(1—x,)x,

“period doubling bifurcations”
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Chaos in a Discrete Time Logistic Growth Model

r=3 period-2 cycle born
rp =3.4494  period-4 cycle born
r3=3.544  period-8 cycle born

X1 = r(1—x,)x,

r4 =3.564  period-16 cycle born

7o = 3.5699
After r > r., chaotic behavior for a window of r, followed by
windows of periodic behavior (e.g., period-3 cycle around r =
3.83).

Lecture 6 Notes — ME6402, Spring 2025 21/22



Chaos in a Discrete Time Logistic Growth Model

Below is the cobweb diagram for r = 3.9 which is in the chaotic sns1 = (1= xa)x

regime:
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