Lecture 6 – ME6402, Spring 2025 Center Manifold Theory and Chaos in Discrete-Time

Maegan Tucker

January 23, 2025

Goals of Lecture 6

- ▶ Center Manifold Theory
- Discrete-time Systems
- \blacktriangleright Chaos in Discrete-time

Additional Reading

- Khalil, Chapter 8.1
- ▶ Sastry, Chapter 7.6.1

These slides are derived from notes created by Murat Arcak and licensed under a [Cre](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ative Commons Attribution-NonCommercial-](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ShareAlike 4.0 International License.](http://creativecommons.org/licenses/by-nc-sa/4.0/)

 $\dot{x} = f(x)$ $f(0) = 0$ Suppose $A \triangleq \frac{\partial f}{\partial A}$ ∂x $\Big|_{x=0}$ has *k* eigenvalues will zero real parts, and $m = n - k$ eigenvalues with negative real parts. Define $\int y$ *z* # $=Tx$ such that $TAT^{-1} =$ $\begin{bmatrix} A_1 & 0 \end{bmatrix}$ 0 *A*² 1

where

- eigenvalues of A_1 have zero real parts, and
- eigenvalues of A_2 have negative real parts.

Center Manifold Theory

Rewrite $\dot{x} = f(x)$ in the new coordinates: $\dot{y} = A_1 y + g_1(y, z)$ $\dot{z} = A_2 z + g_2(y, z)$

where

$$
\begin{aligned} \n\triangleright \quad & g_i(0,0) = 0, \\ \n\triangleright \quad & \frac{\partial g_i}{\partial y}(0,0) = 0, \\ \n\triangleright \quad & \frac{\partial g_i}{\partial z}(0,0) = 0, \ i = 1,2. \n\end{aligned}
$$

$$
\begin{bmatrix} y \\ z \end{bmatrix} = Tx
$$

$$
TAT^{-1} = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}
$$

"

- \blacktriangleright Eigenvalues of A_1 have zero real parts
- \blacktriangleright Eigenvalues of A_2 have negative real parts

Center Manifold Theory *gi*(0, 0) = 0, *[∂]gi [∂]^y* (0, 0) = 0, *[∂]gi [∂]^z* (0, 0) = 0, *i* = 1, 2.

Theorem 1: There exists an invariant manifold $z = h(y)$ defined in a neighborhood of the origin such that neighborhood of the origin such that

 $z = h(y)$ is called a *center manifold* in this case.

 $\text{Reduced System: } \dot{y} = A_1 y + g_1(y, h(y)) \quad y \in \mathbb{R}^k$

Rewrite $\dot{x} = f(x)$ in the new coordinates:

$$
\dot{y} = A_1 y + g_1(y, z)
$$

$$
\dot{z} = A_2 z + g_2(y, z)
$$

$$
g_i(0,0) = 0,
$$

\n
$$
\frac{\partial g_i}{\partial y}(0,0) = 0,
$$

\n
$$
\frac{\partial g_i}{\partial z}(0,0) = 0, i = 1,2.
$$

Center Manifold Theory

Theorem 2: If $y = 0$ is asymptotically stable (resp., unstable) for the reduced system, then $x = 0$ is asymptotically stable (resp., unstable) for the full system $\dot{x} = f(x)$.

 \blacktriangleright Reduced System: $\dot{y} =$ *A*₁*y* + *g*₁(*y*, *h*(*y*)) *y* ∈ \mathbb{R}^k

Characterizing the Center Manifold

Define $w \triangleq z - h(y)$ and note that it satisfies

$$
\dot{w} = A_2 z + g_2(y, z) - \frac{\partial h}{\partial y} \Big(A_1 y + g_1(y, z) \Big).
$$

The invariance of $z = h(y)$ means that $w = 0$ implies $\dot{w} = 0$. Thus,

the expression above must vanish when we substitute $z = h(y)$:

$$
A_2h(y) + g_2(y, h(y)) - \frac{\partial h}{\partial y} (A_1y + g_1(y, h(y))) = 0.
$$

To find *h*(*y*) solve this partial differential equation for *h* as a function on *y*.

Characterizing the Center Manifold

If the exact solution is unavailable, an approximation might be sufficient.

For scalar *y*, expand *h*(*y*) as

 $h(y) = h_2y^2 + \cdots + h_py^p + O(y^{p+1})$ where $h_1 = h_0 = 0$ because $h(0) = \frac{\partial h}{\partial y}(0) = 0$. The notation $O(y^{p+1})$ refers to the higher order terms of power $p+1$ and above.

Example

Example: $\dot{y} = yz$

$$
\dot{y} =
$$

$$
\dot{z} = -z + ay^2 \quad a \neq 0
$$

This is of the form at right with $g_1(y, z) = yz$, $g_2(y, z) = ay^2$, $A_2 = -1$. Thus $h(y)$ must satisfy $-h(y) + ay^2 - \frac{\partial h}{\partial y}$ $\frac{\partial u}{\partial y}$ *yh*(*y*) = 0.

▶ Transformed system:

$$
\dot{y} = A_1 y + g_1(y, z)
$$

$$
\dot{z} = A_2 z + g_2(y, z)
$$

▶ *h* must satisfy:

$$
A_2h(y) + g_2(y, h(y))
$$

-
$$
\frac{\partial h}{\partial y} (A_1y + g_1(y, h(y))) = 0
$$

Try $h(y) = h_2y^2 + O(y^3)$:

Example

Example: $\dot{v} = vz$

$$
\dot{y} =
$$

$$
\dot{z} = -z + ay^2 \quad a \neq 0
$$

This is of the form at right with $g_1(y, z) = yz$, $g_2(y, z) = ay^2$, $A_2 = -1$. Thus $h(y)$ must satisfy

$$
-h(y) + ay^2 - \frac{\partial h}{\partial y}yh(y) = 0.
$$

Try
$$
h(y) = h_2 y^2 + O(y^3)
$$
:
\n
$$
0 = -h_2 y^2 + O(y^3) + ay^2 - (2h_2 y + O(y^2))y(h_2 y^2 + O(y^3))
$$
\n
$$
= (a - h_2)y^2 + O(y^3)
$$
\n
$$
\implies h_2 = a
$$

Reduced System: $\dot{y} = y(ay^2 + O(y^3)) = ay^3 + O(y^4)$.

If $a < 0$, the full systems is asymptotically stable. If $a > 0$ unstable. [Lecture 6 Notes – ME6402, Spring 2025](#page-0-0) 8/22

▶ Transformed system:

$$
\dot{y} = A_1 y + g_1(y, z)
$$

$$
\dot{z} = A_2 z + g_2(y, z)
$$

▶ *h* must satisfy:

$$
A_2h(y) + g_2(y, h(y))
$$

-
$$
\frac{\partial h}{\partial y} (A_1y + g_1(y, h(y))) = 0
$$

Discrete-Time Models and a Chaos Example

 $f(x^*) = 0$ *f*(*x*

CT: $\dot{x}(t) = f(x(t))$ DT: $x_{n+1} = f(x_n)$ $n = 0, 1, 2, ...$ ∗) = *x* ∗ ("fixed point")

Asymptotic stability criterion: Asymptotic stability criterion: $\Re \lambda_i(A) < 0$ where $A \triangleq \frac{\partial f}{\partial A}$ ∂x $f'(x^*) < 0$ for first order system $|f(x^*)|$

 $\left|\int_{x=x^*}$ $|\lambda_i(A)| < 1$ where $A \triangleq \frac{\partial f}{\partial x}$ ∂x *x*=*x* $\vert x^*(x^*) \vert < 1$ for first order system

[Lecture 6 Notes – ME6402, Spring 2025](#page-0-0) 9/22

Cobweb Diagrams for First Order Discrete-Time Systems

These criteria are inconclusive if the respective inequality is not strict, but for first order systems we can determine stability graphically using a cobweb diagram

Cobweb Diagrams for First Order Discrete-Time Systems *Cobweb Diagrams for First Order Discrete-Time Systems*

 $\frac{\text{Example:}}{\text{Example:}} \quad x_{n+1} = \sin(x_n)$ has unique fixed point at 0. Stability test above inconclusive since $f'(0) = 1$. However, the "cobweb" diagram below illustrates the convergence of iterations to 0:

Oscillations in Discrete-Time Systems

In discrete time, even first order systems can exhibit oscillations: In discrete time, even first order systems can exhibit oscillations:

$$
f(p) = q
$$
 $f(q) = p$ \implies $f(f(p)) = p$ $f(f(q)) = q$

- \blacktriangleright For the existence of a period-2 cycle, the map $f(f(\cdot))$ must have two fixed points in addition to the fixed points of $f(.)$.
- \blacktriangleright Period-3 cycles: fixed points of $f(f(f(\cdot)))$.

Chaos in a Discrete Time Logistic Growth Model fixed points in addition to the fixed points of *f*(·). Period-3 cycles: fixed points of *f*(*f*(*f*(·))).

$$
x_{n+1}=r(1-x_n)x_n
$$

Range of interest: $0 \le x \le 1$ $(x_n > 1 \Rightarrow x_{n+1} < 0)$

We will study the range $0 \le r \le 4$ so that $f(x) = r(1-x)x$ maps $[0,1]$ onto itself. λ

Fixed points:
$$
x = r(1-x)x \Rightarrow \begin{cases} x^* = 0 \text{ and} \\ x^* = 1 - \frac{1}{r} \text{ if } r > 1. \end{cases}
$$

 $\underline{r \le 1:}$ $x^* = 0$ unique and stable fixed point

$$
\begin{matrix}\n\end{matrix}
$$

$$
x_{n+1} = r(1-x_n)x_n
$$

[Lecture 6 Notes – ME6402, Spring 2025](#page-0-0) 15/22

Chaos in a Discrete Time Logistic Growth Model *x* iscrete Time Logistic (

r > 1: *x* = 0 unstable because $f'(0) = r > 1$

$$
x_{n+1} = r(1-x_n)x_n
$$

Note that a transcritical bifurcation occurred at $r = 1$, creating the new equilibrium 1

$$
x^* = 1 - \frac{1}{r}.
$$

Evaluate its stability using $f'(x^*) = r(1 - 2x^*) = 2 - r$.

$$
r < 3 \implies |f'(x^*)| < 1 \text{ (stable)}
$$

$$
r > 3 \implies |f'(x^*)| > 1 \text{ (unstable)}.
$$

 $x_{n+1} = r(1-x_n)x_n$

At $r = 3$, a period-2 cycle is born: $x = f(f(x))$ $= r(1 - f(x))f(x)$ $= r(1 - r(1 - x)x)r(1 - x)x$ $= r^2x(1-x)(1-r+rx-rx^2)$ $0 = r^2x(1-x)(1-r+rx-rx^2) - x$ Factor out *x* and $(x-1+\frac{1}{r})$ $\frac{1}{r}$), find the roots of the quotient: $r+1 \mp \sqrt{(r-3)(r+1)}$

$$
p, q = \frac{r + 1 + \sqrt{(r - 3)(r + 1)}}{2r}
$$

$$
x_{n+1}=r(1-x_n)x_n
$$

[Lecture 6 Notes – ME6402, Spring 2025](#page-0-0) 18/22

$$
x_{n+1} = r(1 - x_n)x_n
$$

\n
$$
p, q = \frac{r + 1 \mp \sqrt{(r - 3)(r + 1)}}{2r}
$$

At *r* = 3.4494, a period-4 cycle is born! [Lecture 6 Notes – ME6402, Spring 2025](#page-0-0) 19/22

This period-2 cycle is stable when
$$
r < 1 + \sqrt{6} = 3.4494
$$
:
\n
$$
\frac{d}{dx}f(f(x))\Big|_{x=p} = f'(f(p))f'(p) = f'(p)f'(q) = 4 + 2r - r^2
$$
\n
$$
|4 + 2r - r^2| < 1 \implies 3 < r < 1 + \sqrt{6} = 3.4494
$$

At $r = 3.4494$, a period-4 cycle is born! At *r* = 3.4494, a period-4 cycle is born!

$$
x_{n+1} = r(1-x_n)x_n
$$

[Lecture 6 Notes – ME6402, Spring 2025](#page-0-0) 20/22

- $r_1 = 3$ period-2 cycle born
- r_2 = 3.4494 period-4 cycle born
- $r_3 = 3.544$ period-8 cycle born
- $r_4 = 3.564$ period-16 cycle born

. . *r*[∞] = 3.5699

.

After $r > r_{\infty}$, chaotic behavior for a window of *r*, followed by windows of periodic behavior (e.g., period-3 cycle around $r =$ 3.83).

$$
x_{n+1} = r(1 - x_n)x_n
$$

Below is the cobweb diagram for $r = 3.9$ which is in the chaotic regime:

$$
x_{n+1} = r(1-x_n)x_n
$$

[Lecture 6 Notes – ME6402, Spring 2025](#page-0-0) 22/22