Lecture 6 – ME6402, Spring 2025 Center Manifold Theory and Chaos in Discrete-Time

Maegan Tucker

January 23, 2025

Goals of Lecture 6

- Center Manifold Theory
- Discrete-time Systems
- Chaos in Discrete-time

Additional Reading

- Khalil, Chapter 8.1
- Sastry, Chapter 7.6.1

These slides are derived from notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
$$\begin{split} \dot{x} &= f(x) \quad f(0) = 0\\ \text{Suppose } A \triangleq \left. \frac{\partial f}{\partial x} \right|_{x=0} \text{ has } k \text{ eigenvalues will zero real parts, and}\\ m &= n - k \text{ eigenvalues with negative real parts.}\\ \text{Define } \begin{bmatrix} y\\ z \end{bmatrix} = Tx \text{ such that}\\ TAT^{-1} &= \begin{bmatrix} A_1 & 0\\ 0 & A_2 \end{bmatrix} \end{split}$$

where

- eigenvalues of A₁ have zero real parts, and
- eigenvalues of A_2 have negative real parts.

Center Manifold Theory

Rewrite $\dot{x} = f(x)$ in the new coordinates: $\dot{y} = A_1 y + g_1(y,z)$ $\dot{z} = A_2 z + g_2(y,z)$

where

$$g_i(0,0) = 0,$$

$$\frac{\partial g_i}{\partial y}(0,0) = 0,$$

$$\frac{\partial g_i}{\partial z}(0,0) = 0, i = 1,2.$$

$$\begin{bmatrix} y \\ z \end{bmatrix} = Tx$$
$$TAT^{-1} = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$$

-

- Eigenvalues of A₁ have zero real parts
- Eigenvalues of A₂ have negative real parts

Center Manifold Theory

<u>Theorem 1</u>: There exists an invariant manifold z = h(y) defined in a neighborhood of the origin such that

z = h(y) is called a *center manifold* in this case.

Reduced System: $\dot{y} = A_1 y + g_1(y, h(y))$ $y \in \mathbb{R}^k$

Rewrite x = f(x) in the new coordinates:

$$\dot{y} = A_1 y + g_1(y, z)$$
$$\dot{z} = A_2 z + g_2(y, z)$$

$$g_i(0,0) = 0,$$

$$\frac{\partial g_i}{\partial y}(0,0) = 0,$$

$$\frac{\partial g_i}{\partial z}(0,0) = 0, i = 1,2.$$

Center Manifold Theory

<u>Theorem 2</u>: If y = 0 is asymptotically stable (resp., unstable) for the reduced system, then x = 0 is asymptotically stable (resp., unstable) for the full system $\dot{x} = f(x)$.

• Reduced System: $\dot{y} = A_1 y + g_1(y, h(y))$ $y \in \mathbb{R}^k$

Characterizing the Center Manifold

Define $w \triangleq z - h(y)$ and note that it satisfies

$$\dot{w} = A_2 z + g_2(y,z) - \frac{\partial h}{\partial y} \Big(A_1 y + g_1(y,z) \Big).$$

The invariance of z = h(y) means that w = 0 implies $\dot{w} = 0$. Thus,

the expression above must vanish when we substitute z = h(y):

$$A_2h(y) + g_2(y,h(y)) - \frac{\partial h}{\partial y} \Big(A_1y + g_1(y,h(y)) \Big) = 0.$$

To find h(y) solve this partial differential equation for h as a function on y.

Characterizing the Center Manifold

If the exact solution is unavailable, an approximation might be sufficient.

For scalar y, expand h(y) as

 $h(y) = h_2 y^2 + \dots + h_p y^p + O(y^{p+1})$ where $h_1 = h_0 = 0$ because $h(0) = \frac{\partial h}{\partial y}(0) = 0$. The notation $O(y^{p+1})$ refers to the higher order terms of power p+1 and above.

Example

Example:

$$\dot{y} = yz$$

$$\dot{z} = -z + ay^2 \quad a \neq 0$$

This is of the form at right with $g_1(y,z) = yz$, $g_2(y,z) = ay^2$, $A_2 = -1$. Thus h(y) must satisfy $-h(y) + ay^2 - \frac{\partial h}{\partial y}yh(y) = 0.$

Try $h(y) = h_2 y^2 + O(y^3)$:

Transformed system:

$$\dot{y} = A_1 y + g_1(y,z)$$
$$\dot{z} = A_2 z + g_2(y,z)$$

h must satisfy:

$$\begin{split} &A_2h(y) + g_2(y,h(y)) \\ &- \frac{\partial h}{\partial y} \Big(A_1 y + g_1(y,h(y)) \Big) = 0 \end{split}$$

Example

Example:

$$\dot{y} = yz$$

$$\dot{z} = -z + ay^2 \quad a \neq 0$$

This is of the form at right with $g_1(y,z) = yz$, $g_2(y,z) = ay^2$, $A_2 = -1$. Thus h(y) must satisfy

$$-h(y) + ay^{2} - \frac{\partial h}{\partial y}yh(y) = 0.$$

Try $h(y) = h_{2}y^{2} + O(y^{3})$:
 $0 = -h_{2}y^{2} + O(y^{3}) + ay^{2} - (2h_{2}y + O(y^{2}))y(h_{2}y^{2} + O(y^{3}))$
 $= (a - h_{2})y^{2} + O(y^{3})$
 $\Longrightarrow h_{2} = a$

Reduced System: $\dot{y} = y(ay^2 + O(y^3)) = ay^3 + O(y^4)$.

If a < 0, the full systems is asymptotically stable. If a > 0 unstable. Lecture 6 Notes - ME6402, Spring 2025 Transformed system:

$$\dot{y} = A_1 y + g_1(y, z)$$
$$\dot{z} = A_2 z + g_2(y, z)$$

h must satisfy:

$$\begin{aligned} A_2h(y) + g_2(y, h(y)) \\ - \frac{\partial h}{\partial y} \Big(A_1 y + g_1(y, h(y)) \Big) &= 0 \end{aligned}$$

Discrete-Time Models and a Chaos Example

CT: $\dot{x}(t) = f(x(t))$ $f(x^*) = 0$

DT: $x_{n+1} = f(x_n)$ n = 0, 1, 2, ... $f(x^*) = x^*$ ("fixed point")

Asymptotic stability criterion: $\Re \lambda_i(A) < 0$ where $A \triangleq \left. \frac{\partial f}{\partial x} \right|_{x=x^*} \quad |\lambda_i(A)| < 1$ where $A \triangleq \left. \frac{\partial f}{\partial x} \right|_{x=x^*}$ $f'(x^*) < 0$ for first order system

Asymptotic stability criterion: $|f'(x^*)| < 1$ for first order system

Cobweb Diagrams for First Order Discrete-Time Systems

These criteria are inconclusive if the respective inequality is not strict, but for first order systems we can determine stability graphically using a *cobweb diagram*

Cobweb Diagrams for First Order Discrete-Time Systems

Example: $x_{n+1} = \sin(x_n)$ has unique fixed point at 0. Stability test above inconclusive since f'(0) = 1. However, the "cobweb" diagram below illustrates the convergence of iterations to 0:

Oscillations in Discrete-Time Systems

In discrete time, even first order systems can exhibit oscillations:

$$f(p) = q \quad f(q) = p \quad \Longrightarrow \quad f(f(p)) = p \quad f(f(q)) = q$$

- ► For the existence of a period-2 cycle, the map f(f(·)) must have two fixed points in addition to the fixed points of f(·).
- ▶ Period-3 cycles: fixed points of $f(f(f(\cdot)))$.

$$x_{n+1} = r(1-x_n)x_n$$

Range of interest: $0 \le x \le 1$ $(x_n > 1 \implies x_{n+1} < 0)$

We will study the range $0 \le r \le 4$ so that f(x) = r(1-x)x maps [0,1] onto itself.

Fixed points:
$$x = r(1-x)x \Rightarrow \begin{cases} x^* = 0 \text{ and} \\ x^* = 1 - \frac{1}{r} \text{ if } r > 1. \end{cases}$$

 $r \le 1$: $x^* = 0$ unique and stable fixed point

 $x_{n+1} = r(1 - x_n)x_n$

<u>r > 1</u>: x = 0 unstable because f'(0) = r > 1

$$x_{n+1} = r(1 - x_n)x_n$$

Note that a transcritical bifurcation occurred at r = 1, creating the new equilibrium

$$\begin{aligned} x^* &= 1 - \frac{1}{r}.\\ \text{Evaluate its stability using } f'(x^*) &= r(1 - 2x^*) = 2 - r.\\ r &< 3 \ \Rightarrow \ |f'(x^*)| &< 1 \ \text{(stable)}\\ r &> 3 \ \Rightarrow \ |f'(x^*)| > 1 \ \text{(unstable)}. \end{aligned}$$

$$x_{n+1} = r(1 - x_n)x_n$$

At r = 3, a period-2 cycle is born: x = f(f(x))= r(1 - f(x))f(x)= r(1 - r(1 - x)x)r(1 - x)x $=r^{2}x(1-x)(1-r+rx-rx^{2})$ $0 = r^{2}x(1-x)(1-r+rx-rx^{2}) - x$ Factor out x and $(x-1+\frac{1}{r})$, find the roots of the quotient: $r + 1 \mp \sqrt{(r-3)(r+1)}$

$$p,q = \frac{r+1 + \sqrt{(r-3)(r+1)}}{2r}$$

$$x_{n+1} = r(1 - x_n)x_n$$

$$x_{n+1} = r(1 - x_n)x_n$$
$$p, q = \frac{r + 1 \pm \sqrt{(r-3)(r+1)}}{2r}$$

This period-2 cycle is stable when
$$r < 1 + \sqrt{6} = 3.4494$$
:

$$\frac{d}{dx}f(f(x))\Big|_{x=p} = f'(f(p))f'(p) = f'(p)f'(q) = 4 + 2r - r^2$$

$$|4 + 2r - r^2| < 1 \implies 3 < r < 1 + \sqrt{6} = 3.4494$$

At r = 3.4494, a period-4 cycle is born!

$$x_{n+1} = r(1 - x_n)x_n$$

"period doubling bifurcations"

- $r_1 = 3$ period-2 cycle born
- $r_2 = 3.4494$ period-4 cycle born
- $r_3 = 3.544$ period-8 cycle born
- $r_4 = 3.564$ period-16 cycle born

 $r_{\infty} = 3.5699$

After $r > r_{\infty}$, chaotic behavior for a window of r, followed by windows of periodic behavior (*e.g.*, period-3 cycle around r = 3.83).

$$x_{n+1} = r(1 - x_n)x_n$$

Below is the cobweb diagram for r = 3.9 which is in the chaotic regime:

$$x_{n+1} = r(1 - x_n)x_n$$