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Goals of Lecture 5

▶ Understand bifurcations
in nonlinear systems

Additional Reading

▶ Khalil, Chapter 2.7
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ative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
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Bifurcations

A bifurcation is an abrupt change in qualitative behavior as a
parameter is varied. Examples: equilibria or limit cycles appear-
ing/disappearing, becoming stable/unstable.
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Fold Bifurcation

Also known as “saddle node” or “blue sky” bifurcation.
Example: ẋ = µ − x2

If µ > 0, two equilibria: x =∓√
µ . If µ < 0, no equilibria.
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Bifurcations

A bifurcation is an abrupt change in qualitative behavior as a parame-
ter is varied. Examples: equilibria or limit cycles appearing/disappearing,
becoming stable/unstable.

Fold Bifurcation

Also known as “saddle node” or “blue sky” bifurcation.

Example: ẋ = µ � x2

If µ > 0, two equilibria: x = ⌥p
µ. If µ < 0, no equilibria.

“bifurcation diagram”

µ

x

Transcritical Bifurcation

Example: ẋ = µx � x2

Equilibria: x = 0 and x = µ.
∂ f
∂x

= µ � 2x =

(
µ if x = 0
�µ if x = µ

µ < 0 : x = 0 is stable, x = µ is unstable

µ > 0 : x = 0 is unstable, x = µ is stable

µ

x

Lecture 5 Notes – ME6402, Spring 2025 3/18



Fold Bifurcation

Also known as “saddle node” or “blue sky” bifurcation.
Example: ẋ = µ − x2
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Example: ẋ = µ � x2

If µ > 0, two equilibria: x = ⌥p
µ. If µ < 0, no equilibria.

“bifurcation diagram”

µ

x

Transcritical Bifurcation

Example: ẋ = µx � x2
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Transcritical Bifurcation

Example: ẋ = µx− x2

Equilibria: x = 0 and x = µ.
∂ f
∂x

= µ −2x =

{
µ if x = 0
−µ if x = µ

µ < 0 : x = 0 is stable, x = µ is unstable
µ > 0 : x = 0 is unstable, x = µ is stable

Nonlinear Systems—Lecture 5 Notes1 1 Based on notes created by Murat
Arcak and licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

January 21 2020

Bifurcations

A bifurcation is an abrupt change in qualitative behavior as a parame-
ter is varied. Examples: equilibria or limit cycles appearing/disappearing,
becoming stable/unstable.

Fold Bifurcation

Also known as “saddle node” or “blue sky” bifurcation.

Example: ẋ = µ � x2
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Pitchfork Bifurcation

Example: ẋ = µx− x3

Equilibria: x = 0 for all µ , x = ∓√
µ if

µ > 0.
µ < 0 µ > 0

∂ f
∂x

∣∣∣∣
x=0

= µ stable unstable

∂ f
∂x

∣∣∣∣
x=∓√

µ

=−2µ N/A stable

nonlinear systems—lecture 5 notes 2

Pitchfork Bifurcation

Example: ẋ = µx � x3

Equilibria: x = 0 for all µ, x = ⌥p
µ if µ > 0.

µ < 0 µ > 0
∂ f
∂x

���
x=0

= µ stable unstable
∂ f
∂x

���
x=⌥p

µ
= �2µ N/A stable

µ

x

"supercritical pitchfork”

Example: ẋ = µx + x3

Equilibria: x = 0 for all µ, x = ⌥p�µ if µ < 0.

µ < 0 µ > 0
∂ f
∂x

���
x=0

= µ stable unstable
∂ f
∂x

���
x=⌥p�µ

= �2µ unstable N/A

µ

x

"subcritical pitchfork”

Example: ẋ = µx + x3 � x5

µ

x

subcritical pitchfork
fold
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Example: ẋ = µx + x3

Equilibria: x = 0 for all µ, x = ⌥p�µ if µ < 0.

µ < 0 µ > 0
∂ f
∂x

���
x=0

= µ stable unstable
∂ f
∂x

���
x=⌥p�µ

= �2µ unstable N/A

µ

x

"subcritical pitchfork”
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Example: ẋ = µx � x3

Equilibria: x = 0 for all µ, x = ⌥p
µ if µ > 0.

µ < 0 µ > 0
∂ f
∂x

���
x=0

= µ stable unstable
∂ f
∂x

���
x=⌥p

µ
= �2µ N/A stable

µ

x

"supercritical pitchfork”

Example: ẋ = µx + x3
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Pitchfork Bifurcation (cont.)

Example: ẋ = µx+ x3

Equilibria: x = 0 for all µ , x =∓√−µ if µ < 0.
µ < 0 µ > 0

∂ f
∂x

∣∣∣∣
x=0

= µ stable unstable

∂ f
∂x

∣∣∣∣
x=∓√−µ

=−2µ unstable N/A
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Pitchfork Bifurcation (cont.)

Example: ẋ = µx+ x3 − x5
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Pitchfork Bifurcation (cont.)

Hysteresis arising from a subcritical pitchfork bifurcation:
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Bifurcation and hysteresis in perception

Observe the transition from a man’s face to a sitting woman as you

trace the figures from left to right, starting with the top row. When

does the opposite transition happen as you trace back from the end

to the beginning? [Fisher, 1967]
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Higher Order Systems

▶ Fold, transcritical, and pitchfork are one-dimensional
bifurcations, as evident from the first order examples
above.

▶ They occur in higher order systems too, but are restricted
to a one-dimensional manifold.

1D subspace: cT
1 x = · · ·= cT

n−1x = 0
1D manifold: g1(x) = · · ·= gn−1(x) = 0
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Higher Order Systems: Example

Example 1: ẋ1 = µ − x2
1

ẋ2 = −x2

A fold bifurcation occurs on the invariant x2 = 0 subspace:

nonlinear systems—lecture 5 notes 3

Hysteresis arising from a subcritical pitchfork bifurcation:

µ

Bifurcation and hysteresis in perception:

Figure 1: Observe the transition from
a man’s face to a sitting woman as
you trace the figures from left to right,
starting with the top row. When does
the opposite transition happen as
you trace back from the end to the
beginning? [Fisher, 1967]

Higher Order Systems

Fold, transcritical, and pitchfork are one-dimensional bifurcations,
as evident from the first order examples above. They occur in higher
order systems too, but are restricted to a one-dimensional manifold.

1D subspace: cT
1 x = · · · = cT

n�1x = 0

1D manifold: g1(x) = · · · = gn�1(x) = 0

Example 1: ẋ1 = µ � x2
1

ẋ2 = �x2

A fold bifurcation occurs on the invariant x2 = 0 subspace:

x1x1x1

x2x2x2µ > 0 : µ = 0 : µ < 0 :
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Higher Order Systems: Example

Example 2: bistable switch (Lecture 1)

ẋ1 =−ax1 + x2

ẋ2 =
x2

1

1+ x2
1
−bx2

A fold bifurcation occurs at µ ≜ ab = 0.5:

nonlinear systems—lecture 5 notes 4

Example 2: bistable switch (Lecture 1)

ẋ1 = �ax1 + x2

ẋ2 =
x2

1
1 + x2

1
� bx2

A fold bifurcation occurs at µ , ab = 0.5:

x1

x2

x2 = 1
b

x2
1

1+x2
1

x2 = ax1

a > 0.5/b
a = 0.5/b

a < 0.5/b

Characteristic of one-dimensional bifurcations:

∂ f
∂x

����
µ=µc , x=x⇤(µc)

has an eigenvalue at zero

where x⇤(µ) is the equilibrium point undergoing bifurcation and µc

is the critical value at which the bifurcation occurs.

Example 1 above:

∂ f
∂x

����
µ=0,x=0

=

"
0 0
0 �1

#
! l1,2 = 0 ,�1

Example 2 above:

∂ f
∂x

����
µ= 1

2 ,x1=1,x2=a
=

"
�a 1

1
2 �b

#
! l1,2 = 0 ,�(a + b)

Hopf Bifurcation

Two-dimensional bifurcation unlike the one-dimensional types above.

Example: Supercritical Hopf bifurcation

ẋ1 = x1(µ � x2
1 � x2

2) � x2

ẋ2 = x2(µ � x2
1 � x2

2) + x1

In polar coordinates:

ṙ = µr � r3

q̇ = 1
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One-Dimensional Bifurcations

Characteristic of one-dimensional bifurcations:
∂ f
∂x

∣∣∣∣
µ=µc,x=x∗(µc)

has an eigenvalue at zero

where x∗(µ) is the equilibrium point undergoing bifurcation and
µ

c is the critical value at which the bifurcation occurs.

Example 1 previously:

∂ f
∂x

∣∣∣∣
µ=0,x=0

=

[
0 0
0 −1

]
→ λ1,2 = 0 ,−1

Example 2 previously:

∂ f
∂x

∣∣∣∣
µ= 1

2 ,x1=1,x2=a
=




−a 1
1
2

−b


→ λ1,2 = 0 ,−(a+b)
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Hopf Bifurcation

Two-dimensional bifurcation unlike the one-dimensional types
previously.
Example: Supercritical Hopf bifurcation

ẋ1 = x1(µ − x2
1 − x2

2)− x2

ẋ2 = x2(µ − x2
1 − x2

2)+ x1

In polar coordinates:

ṙ = µr− r3

θ̇ = 1

Note that a positive equilibrium for the r subsystem means a
limit cycle in the (x1,x2) plane.
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Hopf Bifurcation (Example cont.)

µ < 0: stable equilibrium at r = 0
µ > 0: unstable equilibrium at r = 0 and stable limit cycle at
r =

√
µ

nonlinear systems—lecture 5 notes 5

Note that a positive equilibrium for the r subsystem means a limit
cycle in the (x1, x2) plane.

µ < 0: stable equilibrium at r = 0

µ > 0: unstable equilibrium at r = 0 and stable limit cycle at r =
p

µ

µ

x2

x1

The origin loses stability at µ = 0 and a stable limit cycle emerges.

Example: Subcritical Hopf bifurcation

ṙ = µr + r3 � r5

q̇ = 1

µ

x2

x1

Phase portrait for �0.25 < µ < 0:

x1

x2

Characteristic of the Hopf bifurcation:

∂ f
∂x

����
µ=µc , x=x⇤(µc)

has complex conjugate eigenvalues

on the imaginary axis.

The origin loses stability at µ = 0 and a stable limit cycle
emerges.
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Hopf Bifurcation (Example 2)

Example: Subcritical Hopf bifurcation

ṙ = µr+ r3 − r5

θ̇ = 1

nonlinear systems—lecture 5 notes 5

Note that a positive equilibrium for the r subsystem means a limit
cycle in the (x1, x2) plane.

µ < 0: stable equilibrium at r = 0

µ > 0: unstable equilibrium at r = 0 and stable limit cycle at r =
p

µ

µ
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x1

The origin loses stability at µ = 0 and a stable limit cycle emerges.

Example: Subcritical Hopf bifurcation
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����
µ=µc , x=x⇤(µc)

has complex conjugate eigenvalues

on the imaginary axis.
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Hopf Bifurcation (Example 2 cont.)

Phase portrait for −0.25 < µ < 0:

nonlinear systems—lecture 5 notes 5

Note that a positive equilibrium for the r subsystem means a limit
cycle in the (x1, x2) plane.

µ < 0: stable equilibrium at r = 0

µ > 0: unstable equilibrium at r = 0 and stable limit cycle at r =
p

µ

µ

x2

x1

The origin loses stability at µ = 0 and a stable limit cycle emerges.

Example: Subcritical Hopf bifurcation

ṙ = µr + r3 � r5

q̇ = 1

µ

x2

x1

Phase portrait for �0.25 < µ < 0:

x1

x2

Characteristic of the Hopf bifurcation:

∂ f
∂x

����
µ=µc , x=x⇤(µc)

has complex conjugate eigenvalues

on the imaginary axis.
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Characteristic of the Hopf Bifurcation

Characteristic of the Hopf bifurcation:
∂ f
∂x

∣∣∣∣
µ=µc,x=x∗(µc)

has complex conjugate eigenvalues

on the imaginary axis.
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