Lecture 3 – ME6402, Spring 2025 Phase Portraits of Nonlinear Systems Near Hyperbolic Equilibria

Maegan Tucker

January 14, 2025

Goals of Lecture 3

- Hartman-Grobman
 Theorem
- Bendixson's Theorem
- Invariant Sets

Additional Reading

Khalil, Chapter 2

These slides are derived from notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. *hyperbolic equilibrium:* linearization has no eigenvalues on the imaginary axis

Phase portraits of nonlinear systems near hyperbolic equilibria are qualitatively similar to the phase portraits of their linearization. According to the Hartman-Grobman Theorem (coming up) a "continuous deformation" maps one phase portrait to the other.

Hartman-Grobman Theorem

<u>Hartman-Grobman Theorem</u>: If x^* is a hyperbolic equilibrium of $\dot{x} = f(x), x \in \mathbb{R}^n$, then there exists a *homeomorphism* z = h(x)defined in a neighborhood of x^* that maps trajectories of $\dot{x} = f(x)$ to those of $\dot{z} = Az$ where $A \triangleq \frac{\partial f}{\partial x}\Big|_{x \to x^*}$.

 A homeomorphism is a continuous map with a continuous inverse

Hartman-Grobman Theorem: A non-example

The hyperbolicity condition can't be removed: Example:

$$\dot{x}_1 = -x_2 + ax_1(x_1^2 + x_2^2) \\ \dot{x}_2 = x_1 + ax_2(x_1^2 + x_2^2) \implies$$

Hartman-Grobman Theorem: A non-example

The hyperbolicity condition can't be removed: Example:

$$\begin{aligned} \dot{x}_1 &= -x_2 + ax_1(x_1^2 + x_2^2) & \Rightarrow & \dot{r} = ar^3 \\ \dot{x}_2 &= x_1 + ax_2(x_1^2 + x_2^2) & \Rightarrow & \dot{\theta} = 1 \\ x^* &= (0,0) \quad A = \frac{\partial f}{\partial x}\Big|_{x = x^*} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \end{aligned}$$

Hartman-Grobman Theorem: A non-example (cont.)

There is no continuous deformation that maps the phase portrait of the linearization to that of the original nonlinear model:

Nonlinear model, polar coordinates:

$$\dot{r} = ar^3$$

 $\dot{\theta} = 1$

Linearization:
$$\dot{x} = Ax$$
,
 $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

Periodic Orbits in the Plane

Bendixson's Theorem: For a time-invariant planar system

$$\dot{x}_1 = f_1(x_1, x_2)$$
 $\dot{x}_2 = f_2(x_1, x_2),$

if $\nabla \cdot f(x) = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}$ is not identically zero and does not change sign in a simply connected region D, then there are no periodic orbits lying entirely in D.

Proof: By contradiction. Suppose a periodic orbit J lies in D. Let S denote the region enclosed by J and n(x) the normal vector to J at x. Then $f(x) \cdot n(x) = 0$ for all $x \in J$. By the Divergence Theorem:

$$\underbrace{\int_{J} f(x) \cdot n(x) d\ell}_{= 0} = \underbrace{\iint_{S} \nabla \cdot f(x) dx}_{\neq 0}.$$

Example: $\dot{x} = Ax, x \in \mathbb{R}^2$ can have periodic orbits only if $\overline{\text{Trace}(A)} = 0, \quad e.g.,$

$$A = \left[\begin{array}{cc} 0 & -\beta \\ \beta & 0 \end{array} \right].$$

Example:

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -\delta x_2 + x_1 - x_1^3 + x_1^2 x_2$ $\delta > 0$

Then

$$\nabla \cdot f(x) =$$

Example:

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -\delta x_2 + x_1 - x_1^3 + x_1^2 x_2$ $\delta > 0$

Then

$$abla \cdot f(x) = rac{\partial f_1}{\partial x_1} + rac{\partial f_2}{\partial x_2} = x_1^2 - \delta$$

Therefore, no periodic orbit can lie entirely in the region $x_1 \leq -\sqrt{\delta}$ where $\nabla \cdot f(x) \geq 0$, or $-\sqrt{\delta} \leq x_1 \leq \sqrt{\delta}$ where $\nabla \cdot f(x) \leq 0$, or $x_1 \geq \sqrt{\delta}$ where $\nabla \cdot f(x) \geq 0$.

Example (cont.)

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\delta x_2 + x_1 - x_1^3 + x_1^2 x_2$$

No periodic orbit can lie entirely in the regions:

$$x_1 \le -\sqrt{\delta} -\sqrt{\delta} \le x_1 \le \sqrt{\delta} x_1 \ge \sqrt{\delta}$$

Lecture 3 Notes - ME6402, Spring 2025

Example (cont.)

$$\dot{x}_1 = x_2 \dot{x}_2 = -\delta x_2 + x_1 - x_1^3 + x_1^2 x_2$$

No periodic orbit can lie entirely in the regions:

$$x_1 \le -\sqrt{\delta} -\sqrt{\delta} \le x_1 \le \sqrt{\delta} x_1 \ge \sqrt{\delta}$$

Invariant Sets

<u>Notation</u>: $\phi(t,x_0)$ denotes a trajectory of $\dot{x} = f(x)$ with initial condition $x(0) = x_0$.

Invariant Sets

<u>Notation</u>: $\phi(t,x_0)$ denotes a trajectory of $\dot{x} = f(x)$ with initial condition $x(0) = x_0$. <u>Definition</u>: A set $M \subset \mathbb{R}^n$ is positively (negatively) invariant if, for each $x_0 \in M$, $\phi(t,x_0) \in M$ for all $t \ge 0$ ($t \le 0$).

If $f(x) \cdot n(x) \leq 0$ on the boundary then *M* is positively invariant.

Example 1: A predator-prey model

- $\dot{x} = (a by)x$ Prey (exponential growth when y = 0)
- $\dot{y} = (cx d)y$ Predator (exponential decay when x = 0)

a,b,c,d,>0

Example 1: A predator-prey model

$$\begin{split} \dot{x} &= (a - by)x & \text{Prey (exponential growth when } y = 0) \\ \dot{y} &= (cx - d)y & \text{Predator (exponential decay when } x = 0) \\ a, b, c, d, > 0 & \end{split}$$

The nonnegative quadrant is invariant:

Example 2:
$$\dot{x}_1 = x_1 + x_2 - x_1(x_1^2 + x_2^2)$$

 $\dot{x}_2 = -2x_1 + x_2 - x_2(x_1^2 + x_2^2)$
Show that $B_r \triangleq \{x | x_1^2 + x_2^2 \le r^2\}$ is positively invariant for sufficiently large r .

Example 2:
$$\dot{x}_1 = x_1 + x_2 - x_1(x_1^2 + x_2^2)$$

 $\dot{x}_2 = -2x_1 + x_2 - x_2(x_1^2 + x_2^2)$
Show that $B_r \triangleq \{x | x_1^2 + x_2^2 \le r^2\}$ is positively invariant for sufficiently large r .
 $f(x) \cdot n(x) = x_1^2 + x_1x_2 - x_1^2(x_1^2 + x_2^2) - 2x_1x_2 + x_2^2 - x_2^2(x_1^2 + x_2^2)$
 $= -x_1x_2 + (x_1^2 + x_2^2) - (x_1^2 + x_2^2)^2$

$$= -x_1x_2 + (x_1^{-} + x_2^{-}) - (x_1^{-} + x_2^{-})^{-1}$$

- $x_1x_2 \le \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$ (completion of squares)
Therefore, $f(x) \cdot n(x) \le \frac{3}{2}r^2 - r^4 \le 0$ if $r^2 \ge \frac{3}{2}$.

