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Hyperbolic equilibrium

hyperbolic equilibrium: linearization has no eigenvalues on the

imaginary axis

Phase portraits of nonlinear systems near hyperbolic equilibria
are qualitatively similar to the phase portraits of their lineariza-
tion. According to the Hartman-Grobman Theorem (coming up)
a “continuous deformation” maps one phase portrait to the other.

Lecture 3 Notes — ME6402, Spring 2025 2/12



Hartman-Grobman Theorem

Hartman-Grobman Theorem: If x* is a hyperbolic equilibrium > A homeomorphism is a
of x =f(x),x € R", then there exists a homeomorphism z = h(x) continuous map with a
defined in a neighborhood of x* that maps trajectories of & = f(x) continuous inverse

9
to those of 7= Az where A £ oar

OX |,
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Hartman-Grobman Theorem: A non-example

The hyperbolicity condition can’t be removed:
Example:

k1 = —x2 4 ax; (3 +x3)

) = x1 4+ axy (X3 4+ x3)
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Hartman-Grobman Theorem: A non-example

The hyperbolicity condition can’t be removed:

Example:
o 2, .2 . _ 3
X1 = —xp+ax;(x] +x3) F=ar
iy = x) +axy(x] +x3) =1
of

X :(0,0) Aza

R
e |10
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Hartman-Grobman Theorem: A non-example (cont.)

There is no continuous deformation that maps the phase portrait > Nonlinear model, polar
of the linearization to that of the original nonlinear model: coordinates:
) . i3
X =Ax x=f(x) r=ar
(@a>0) = ) =1

» Linearization: x = Ax,

|
|
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\}' 01]
|

A=
1 0
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Periodic Orbits in the Plane

Bendixson's Theorem: For a time-invariant planar system

=filx1,%2) X2 =folx1,x2),
v afi fz . . )
ifV-f(x)= E + E is not identically zero and does not change

sign in a simply connected region D, then there are no periodic

orbits lying entirely in D.

Proof: By contradiction. Suppose a periodic orbit J lies in D.
Let S denote the region enclosed by J and n(x) the normal vector
to J at x. Then f(x)-n(x) =0 for all x € J. By the Divergence

Theorem:
/ F(x) - n(x)dt = f V. f(x)
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Example: & = Ax,x € R? can have periodic orbits only if
Trace(A) =0, e.g,
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Example:
X] = X2
X = —6xz+x1—x?+x%x2 6>0
Then
Vfx) =
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Example:
X] = X2
Xy = —5xz+x1—x?+x%x2 6>0
Then
ofi  Ifs

Therefore, no periodic orbit can lie entirely in the region x; <
—V/8 where V-£(x) >0, or —V8 < x; < V8 where V-f(x) <0,
or x; > V'8 where V-£(x) > 0.
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Example (cont.)
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fCl =X

Xp = —6xy +x1 —x? +x%x2

» No periodic orbit can lie
entirely in the regions:
> x < —\/g
> VE<x <V§
> x> \/5
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Example (cont.)

not possible: . X2 |
I | .
1 1 X1 = X2
1 1 . 3 )
! ' % Xy = —0xy + x| —xj +x7x2
: :
1 1
1 1
\ | » No periodic orbit can lie
X =-V x =0 entirely in the regions:
: X2 : > x < RVE3
possible: T > —\/gﬁxl < \/g
m m > x> V5
| 1
0 T X1
NN
\ 1
1
1 1
I 1
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Invariant Sets

Notation: ¢(z,xp) denotes a trajectory of x = f(x) with initial
condition x(0) = xo.

Lecture 3 Notes — ME6402, Spring 2025 10/12



Invariant Sets

Notation: ¢(z,xp) denotes a trajectory of x = f(x) with initial
condition x(0) = xo.

Definition: A set M C R" is positively (negatively) invariant if,
for each xo € M, ¢(t,x9) € M for all t >0 (1 < 0).

n(x)

If f(x)-n(x) <0 on the boundary then M is positively invariant.
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Example 1: A predator-prey model
x=(a—by)x Prey (exponential growth when y =0)
y=(cx—d)y Predator (exponential decay when x =0)
a,b,c,d,>0
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Example 1: A predator-prey model
x=(a—by)x Prey (exponential growth when y =0)
y=(cx—d)y Predator (exponential decay when x =0)
a,b,c,d,>0
The nonnegative quadrant is invariant:

—~
ol
~
(SIS
~

saddle
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Example 2

Example 2: X1 = x1+x—x (x% +x%)

K = —2x14x—x(xt+x3)
Show that B, £ {x|x] +x3 < r*} is positively invariant for suffi-
ciently large r.
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Example 2

Example 20 & = xj+x—x(x}+x3) =[]
nx)=
Xy = —2x1+x —xz(x%%—x%) § xz
Show that B, £ {x]x% +x% < r2} is positively invariant for suffi- f(;)’

ciently large r.
F(x) - n(x) = +x10 —xf (6 +23) = 20120 +23 — x5 (4] +3)

= —x1xo+ (x% +x§) — (x% +x§)2

-

-

1 1 :
—x1xy < Ex% + Ex% (completion of squares)

Therefore, f(x)-n(x) < %rZ —*<0ifr?> %
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