Lecture 25 – ME6402, Spring 2025 *High-Order Control Barrier Functions*

Maegan Tucker

April 10, 2025

Goals of Lecture 25

Extend Control Barrier
 Functions to systems
 with relative degree > 1

Control Barrier Functions

<u>Definition</u>: A function h with $C = \{x \mid h(x) \ge 0\}$ is a *control barrier* function (CBF) for (2) if there exists a locally Lipschitz function $\alpha : \mathbb{R} \to \mathbb{R}$ satisfying $\alpha(0) = 0$ such that

$$\sup_{u\in\mathbb{R}^m}\nabla h(x)^T(f(x)+g(x)u)\geq -\alpha(h(x)) \quad \text{for all } x\in\mathbb{R}^n.$$
(1)

We can also write (1) using Lie derivative notation:

$$\sup_{u\in\mathbb{R}^m}L_fh(x)+L_gh(x)u\geq-\alpha(h(x))$$

Define

$$U(x) = \{ u \in \mathbb{R}^m \mid \nabla h(x)^T (f(x) + g(x)u) \ge -\alpha(h(x)) \}.$$

Control-affine system

 $\dot{x} = f(x) + g(x)u$ (2)

Invariance from CBF: Theorem

<u>Theorem</u>: If h is a control barrier function for (3), then the following hold:

- 1 $U(x) \neq \emptyset$ for all x;
- ② Any Lipschitz feedback control $u : \mathbb{R}^n \to \mathbb{R}^m$ satisfying $u(x) \in U(x)$ renders C invariant;
- 3 A feedback control is given by

$$u^*(x) = \begin{cases} 0 \text{ if } \nabla h(x)^T f(x) + \alpha(h(x)) \ge 0\\ \frac{-\nabla h(x)^T f(x) - \alpha(h(x))}{\|\nabla h(x)^T g(x)\|_2^2} (g(x)^T \nabla h(x))\\ \text{ otherwise.} \end{cases}$$

A sufficient condition for $u^*(x)$ to be Lipschitz on some domain is that $\nabla h(x)^T g(x) \neq 0$ everywhere on the domain.

```
Control-affine system

\dot{x} = f(x) + g(x)u (3)

U(x) =
```

 $\{u \in \mathbb{R}^m \mid \nabla h(x)^T (f(x) + g(x)u) \ge -\alpha(h(x))\}.$

Example 1: Cart-Pole System Revisited

Example: Recall the model of the cart-pole system: $\ddot{y} = \dot{v} = \frac{1}{1 + \sin^2 \theta} \left(u + \dot{\theta}^2 \sin \theta - g \sin \theta \cos \theta \right)$ $\ddot{\theta} = \frac{1}{1 + \sin^2 \theta} \left(-u \cos \theta - \dot{\theta}^2 \cos \theta \sin \theta + 2g \sin \theta \right)$

Unlike last lecture, suppose we want y to satisfy $-L \le y \le L$. Try

$$h(x) = \frac{1}{2}(-y^2 + L^2)$$

$$\alpha(s) = \gamma s, \quad \gamma > 0.$$

But $\nabla h(x)^T g(x) \equiv 0$. Then *h* cannot be a CBF because the control input vanishes from (4).

CBF condition:

 $\sup_{u \in \mathbb{R}^m} \nabla h(x)^T (f(x) + g(x)u) \ge -\alpha(h(x))$ (4)

Control Barrier Functions for Systems with Relative Degree > 1

For systems such that $\dot{h}(x)$ does not depend on u, we need h that depends on more state variables. There is a systematic way to do this. Suppose h satisfies $\nabla h(x)^T g(x) \equiv 0$ and cannot be used as a CBF. Define

 $\Psi_1(x) = \nabla h(x)^T f(x) + \alpha_1(h(x))$

for some Lipschitz $lpha_1$ satisfying lpha(0)=0, and let

 $C_1 = \{x \mid \Psi_1(x) \ge 0\}.$

 Recall our definition of relative degree. If h(x) does not depend on u, then the relative degree of the system is > 1

Control Barrier Functions for Systems with Relative Degree > 1

<u>Lemma:</u> Suppose u(x) is a feedback control such that C_1 is invariant. Then $C \cap C_1$ is also invariant, where $C = \{x : h(x) \ge 0\}$.

Proof. Consider $x_0 \in C \cap C_1$ and let x(t) be corresponding closedloop trajectory. Then $x(t) \in C_1$ for all $t \ge 0$ by assumption, and therefore

$$\dot{h}(x(t)) = \nabla h(x(t))^T f(x(t)) \ge -\alpha_1(h(x(t))).$$

Since $h(x_0) \ge 0$ by assumption, $h(x(t)) \ge 0$ for all $t \ge 0$ by the Comparison Lemma.

•
$$C_1 = \{x \mid \Psi_1(x) \ge 0\}.$$

[•] $\Psi_1(x) = \nabla h(x)^T f(x) + \alpha_1(h(x))$

Control Barrier Functions for Systems with Relative Degree > 1

How to ensure C_1 is invariant? Use $\Psi_1(x)$ as a CBF!

- ► If $\nabla \Psi_1(x)^T g(x) \equiv 0$, repeat the process, defining $\Psi_2(x) = \nabla \Psi_1(x)^T f(x) + \alpha_2(\Psi_1(x))$.
- h(x) is called a high-order CBF of degree r when this process ends with a CBF Ψ_r(x).

How many times will we repeat, *i.e.*, what is r? This is related to relative degree (next slide)

• $\Psi_1(x) = \nabla h(x)^T f(x) + \alpha_1(h(x))$

•
$$C_1 = \{x \mid \Psi_1(x) \ge 0\}.$$

High-order CBFs and Relative Degree

► Least relative degree r is the minimum relative degree over all states x. Therefore, $L_g L_f^{r-1} h(x) \neq 0$ for some x, but not necessarily all x.

For the previous construction to lead to valid CBF, we need: $L_f \Psi_r(x) + \alpha_r(\Psi_r(x)) \ge 0$ whenever $L_g \Psi_r(x) = 0$.

Note that $L_g \Psi_r(x) = L_g L_f^{r-1} h(x)$. Therefore, states such that $L_g L_f^{r-1} h(x) = 0$ become important (more on this later).

With h interpreted as output, recall that the system has relative degree r at x when $L_g L_f^{r-1}h(x) \neq 0$ in a neighborhood of x.

Example. Consider the double integrator $\ddot{x}_1 = u$, (*i.e.*, $\dot{x}_1 = x_2$, $\dot{x}_2 = u$) and suppose we want $x_1 \leq L$ always. Choose

$$h(x) = L - x$$

Then $\nabla h(x)^T g(x) \equiv 0$. Choose $\alpha_1(s) = \gamma_1 s$ and let $\Psi_1(x) = \nabla h(x)^T f(x) + \alpha_1(h(x)) = -x_2 + \gamma_1(L - x_1).$

Then

$$\nabla \Psi_1(x)^T g(x) = -1$$

and we can use $\Psi_1(x)$ as a valid CBF.

Example 2 (cont.)

•
$$C = \{x \mid h(x) \ge 0\} = \{x \mid x_1 \le L\}$$

• $C_1 = \{x \mid \Psi_1(x) \ge 0\} = \{x \mid \gamma_1(L - x_1) \ge x_2\}.$

 \blacktriangleright $\ddot{x} = u$

Let's try $\ddot{x}_1 = u$ again, but with safe set $-L \le x \le L$. Choose $h(x) = \frac{1}{2}(-x_1^2 + L^2)$. Then $\dot{h}(x) = -x_1x_2, \quad \ddot{h}(x) = -x_2^2 - x_1u$

Construct

Let's try $\ddot{x}_1 = u$ again, but with safe set $-L \le x \le L$. Choose $h(x) = \frac{1}{2}(-x_1^2 + L^2)$. Then $\dot{h}(x) = -x_1x_2, \quad \ddot{h}(x) = -x_2^2 - x_1u$

Construct

$$\Psi(x) = \dot{h}(x) + \alpha_1(h(x)) = -x_1 x_2 + \alpha_1(\frac{1}{2}(-x_1^2 + L^2))$$

$$\dot{\Psi}(x) = \ddot{h}(x) + \alpha_1'(h(x))\dot{h}(x) = -x_2^2 + \underbrace{x_1}_{L_g L_f h} u + \alpha_1'\left(\frac{1}{2}(-x_1^2 + L^2)\right)(-x_1 x_2)$$

- Least Relative degree is r = 2.
- ► Note $L_g \Psi(x) = L_g L_f h(x)$. Is it possible that $L_g L_f h(x) = 0$? Yes! Whenever $x_1 = 0$.
- Is this a problem? Need to investigate further...

Lecture 25 Notes - ME6402, Spring 2025

• We need to see if we can find α_2 such that $\dot{\Psi}(x) + \alpha_2(\Psi(x)) \ge 0$ whenever $x_1 = 0$, $\Psi(x) \ge 0$, and $h(x) \ge 0$:

$$\dot{\Psi}(x) + \alpha_2(\Psi(x))\big|_{x_1=0} = -x_2^2 + \alpha_2(\alpha_1(L^2/2))$$

Always possible to find x_2 large enough so that $-x_2^2 + \alpha_2(\alpha_1(L^2/2)) < 0$, regardless of α_1 and α_2 , so Ψ is not a valid CBF. What to do?

- Option 1: Nothing, except make sure α₁ and α₂ have sufficient slope so that this is only a problem when x₂ is very large ⇒ practical, but lose theoretical guarantees
- Option 2: try a different high-order CBF h (next slide)

$$\begin{split} \Psi(x) &- x_1 x_2 + \alpha_1 \left(\frac{1}{2} (-x_1^2 + L^2) \right) \\ \Psi(x) &= -x_2^2 + x_1 u \\ &+ \alpha_1' \left(\frac{1}{2} (-x_1^2 + L^2) \right) (-x_1 x_2) \end{split}$$

Same system:
$$\ddot{x}_1 = u$$
. Try
 $h(x) = \frac{1}{4}(-x_1^4 + L^4), \quad \dot{h}(x) = -x_1^3 x_2, \quad \ddot{h}(x) = 3x_1^2 x_2^2 + x^3 u$
Let

$$\Psi(x) = \dot{h} + \gamma_1 h = -x_1^3 x_2 + \frac{\gamma_1}{4} (-x_1^4 + L^4)$$
$$\dot{\Psi}(x) = \ddot{h} + \gamma_1 \dot{h} = 3x_1^2 x_2^2 - x_1^3 u - \gamma_1 x_1^3 x_2$$

Then, still, $x_1^3 = 0$ whenever $x_1 = 0$. But

$$L_f \Psi(x) = 3x_1^2 x_2^2 - \gamma_1 x_1^3 x_2$$

and therefore $L_f \Psi = 0$ whenever $L_g \Psi = 0$. This means Ψ satisfies the CBF constraint $\sup_{u} L_f \Psi(x) + L_g \Psi(x) u \ge -\alpha_2(\Psi(x))$ for any α_2 , and Ψ is a valid $\overset{u}{\mathsf{CBF}}$.

Lecture 25 Notes - ME6402, Spring 2025

Accommodating Loss of Relative Degree

• What was the key in the previous example? A: Make sure $L_f \Psi = 0$ whenever $L_g \Psi = 0$.

A systematic method for system with least relative degree r:

1 Let
$$S = \{x \mid L_g L_f^{r-1} h(x) = 0\}$$
 (Recall that $L_g \Psi = L_g L_f^{r-1} h$)

- 2 If S is in the interior of $C = \{h(x) \ge 0\}$, find $\varepsilon > 0$ such that $S \subseteq \{h(x) \ge \varepsilon\}$. (Else: method does not work)
- **3** Construct new $\tilde{h}(x)$ that saturates to 1 as $h(x) \to \varepsilon$: Let $\tilde{h}(x) = \sigma(h(x)/\varepsilon)$ where σ is any *r*-differentiable function satisfying: $\int \sigma(0) = 0$

$$\begin{cases} \sigma(0) = 0\\ \sigma(\tau) = 1 \text{ for all } \tau \ge 1\\ \sigma'(\tau) > 0 \text{ for all } \tau < 1 \end{cases}$$

Tan, Cortez,
Dimarogonas,
"High-order Barrier
Functions: Robustness,
Safety and
Performance-Critical
Control",
arXiv:2104.00101

Accommodating Loss of Relative Degree

► For homework and project, if needed, can take Option 1.

Demo: Cart-Pole System with Restriction on θ

Try $h(x) = L - \theta$.

$$\begin{split} \ddot{y} &= \frac{1}{1 + \sin^2 \theta} \left(u + \dot{\theta}^2 \sin \theta - g \sin \theta \cos \theta \right) \\ \vec{\theta} &= \frac{1}{1 + \sin^2 \theta} \left(-u \cos \theta - \dot{\theta}^2 \cos \theta \sin \theta + 2g \sin \theta \right) \end{split}$$