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Goals of Lecture 25

▶ Extend Control Barrier
Functions to systems
with relative degree > 1



Control Barrier Functions

Definition: A function h with C= {x | h(x)≥ 0} is a control barrier
function (CBF) for (2) if there exists a locally Lipschitz function
α : R→ R satisfying α(0) = 0 such that

sup
u∈Rm

∇h(x)T(f (x)+g(x)u)≥−α(h(x)) for all x ∈ Rn. (1)

We can also write (1) using Lie derivative notation:

sup
u∈Rm

Lf h(x)+Lgh(x)u ≥−α(h(x))

Define

U(x) = {u ∈ Rm | ∇h(x)T(f (x)+g(x)u)≥−α(h(x))}.

Lecture 25 Notes – ME6402, Spring 2025 2/16

▶ Control-affine system

ẋ = f (x)+g(x)u (2)



Invariance from CBF: Theorem

Theorem: If h is a control barrier function for (3), then the fol-
lowing hold:

1 U(x) ̸= /0 for all x;

2 Any Lipschitz feedback control u : Rn → Rm satisfying
u(x) ∈ U(x) renders C invariant;

3 A feedback control is given by

u∗(x) =


0 if ∇h(x)T f (x)+α(h(x))≥ 0
−∇h(x)T f (x)−α(h(x))

∥∇h(x)Tg(x)∥2
2

(g(x)T
∇h(x))

otherwise.

A sufficient condition for u∗(x) to be Lipschitz on some
domain is that ∇h(x)Tg(x) ̸= 0 everywhere on the domain.
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▶ Control-affine system

ẋ = f (x)+g(x)u (3)

U(x) =

{u ∈ Rm | ∇h(x)T(f (x)+g(x)u)≥−α(h(x))}.



Example 1: Cart-Pole System Revisited

Example: Recall the model of the cart-pole system:

ÿ = v̇ =
1

1+ sin2
θ

(
u+ θ̇

2 sinθ −gsinθ cosθ

)

θ̈ =
1

1+ sin2
θ

(
−ucosθ − θ̇

2 cosθ sinθ +2gsinθ

)
Unlike last lecture, suppose we want y to satisfy −L ≤ y ≤ L. Try

h(x) =
1
2
(−y2 +L2)

α(s) = γs, γ > 0.

But ∇h(x)Tg(x) ≡ 0. Then h cannot be a CBF because the
control input vanishes from (4).
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▶ CBF condition:

sup
u∈Rm

∇h(x)T(f (x)+g(x)u)≥−α(h(x))

(4)



Control Barrier Functions for Systems with Relative Degree > 1

For systems such that ḣ(x) does not depend on u, we need h
that depends on more state variables. There is a systematic way
to do this. Suppose h satisfies ∇h(x)Tg(x) ≡ 0 and cannot be
used as a CBF. Define

Ψ1(x) = ∇h(x)T f (x)+α1(h(x))

for some Lipschitz α1 satisfying α(0) = 0, and let

C1 = {x | Ψ1(x)≥ 0}.
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▶ Recall our definition of
relative degree. If ḣ(x)
does not depend on u,
then the relative degree
of the system is > 1



Control Barrier Functions for Systems with Relative Degree > 1

Lemma: Suppose u(x) is a feedback control such that C1 is in-
variant. Then C ∩C1 is also invariant, where C = {x : h(x)≥ 0}.

Proof. Consider x0 ∈ C∩C1 and let x(t) be corresponding closed-
loop trajectory. Then x(t) ∈ C1 for all t ≥ 0 by assumption, and
therefore

ḣ(x(t)) = ∇h(x(t))T f (x(t))≥−α1(h(x(t)).

Since h(x0) ≥ 0 by assumption, h(x(t)) ≥ 0 for all t ≥ 0 by the
Comparison Lemma.
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▶ Ψ1(x) =
∇h(x)T f (x)+α1(h(x))

▶ C1 = {x | Ψ1(x)≥ 0}.



Control Barrier Functions for Systems with Relative Degree > 1

How to ensure C1 is invariant? Use Ψ1(x) as a CBF!

▶ If ∇Ψ1(x)Tg(x)≡ 0, repeat the process, defining
Ψ2(x) = ∇Ψ1(x)T f (x)+α2(Ψ1(x)).

▶ h(x) is called a high-order CBF of degree r when this
process ends with a CBF Ψr(x).

How many times will we repeat, i.e., what is r? This is related
to relative degree (next slide)
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▶ Ψ1(x) =
∇h(x)T f (x)+α1(h(x))

▶ C1 = {x | Ψ1(x)≥ 0}.



High-order CBFs and Relative Degree

▶ Least relative degree r is the minimum relative degree over
all states x. Therefore, LgLr−1

f h(x) ̸= 0 for some x, but not
necessarily all x.

For the previous construction to lead to valid CBF, we need:
Lf Ψr(x)+αr(Ψr(x))≥ 0 whenever LgΨr(x) = 0.

▶ Note that LgΨr(x) = LgLr−1
f h(x). Therefore, states such

that LgLr−1
f h(x) = 0 become important (more on this

later).
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▶ With h interpreted as
output, recall that the
system has relative
degree r at x when
LgLr−1

f h(x) ̸= 0 in a
neighborhood of x.



Example 2

Example. Consider the double integrator ẍ1 = u, (i.e., ẋ1 = x2,
ẋ2 = u) and suppose we want x1 ≤ L always. Choose

h(x) = L− x1

Then ∇h(x)Tg(x)≡ 0. Choose α1(s) = γ1s and let

Ψ1(x) = ∇h(x)T f (x)+α1(h(x)) =−x2 + γ1(L− x1).

Then

∇Ψ1(x)Tg(x) =−1

and we can use Ψ1(x) as a valid CBF.
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Example 2 (cont.)

▶ C = {x | h(x)≥ 0}= {x | x1 ≤ L}
▶ C1 = {x | Ψ1(x)≥ 0}= {x | γ1(L− x1)≥ x2}.

−γ1C ∩C1

L
x1

x2
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▶ ẍ = u



Example 3

Let’s try ẍ1 = u again, but with safe set −L ≤ x ≤ L. Choose

h(x) =
1
2
(−x2

1 +L2). Then

ḣ(x) =−x1x2, ḧ(x) =−x2
2 − x1u

Construct

Ψ(x) = ḣ(x)+α1(h(x)) =−x1x2 +α1(
1
2
(−x2

1 +L2))

Ψ̇(x) = ḧ(x)+α
′
1(h(x))ḣ(x) =−x2

2 + x1︸︷︷︸
LgLf h

u+α
′
1

(
1
2
(−x2

1 +L2)

)
(−x1x2)

L
x1

x2
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Example 3

Let’s try ẍ1 = u again, but with safe set −L ≤ x ≤ L. Choose

h(x) =
1
2
(−x2

1 +L2). Then

ḣ(x) =−x1x2, ḧ(x) =−x2
2 − x1u

Construct

Ψ(x) = ḣ(x)+α1(h(x)) =−x1x2 +α1(
1
2
(−x2

1 +L2))

Ψ̇(x) = ḧ(x)+α
′
1(h(x))ḣ(x) =−x2

2 + x1︸︷︷︸
LgLf h

u+α
′
1

(
1
2
(−x2

1 +L2)

)
(−x1x2)

▶ Least Relative degree is r = 2.

▶ Note LgΨ(x) = LgLf h(x). Is it possible that LgLf h(x) = 0? Yes!
Whenever x1 = 0.

▶ Is this a problem? Need to investigate further...
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Example 3

▶ We need to see if we can find α2 such that
Ψ̇(x)+α2(Ψ(x))≥ 0 whenever x1 = 0, Ψ(x)≥ 0, and
h(x)≥ 0:

Ψ̇(x)+α2(Ψ(x))
∣∣
x1=0 =−x2

2 +α2(α1(L2/2))

Always possible to find x2 large enough so that −x2
2 +

α2(α1(L2/2)) < 0, regardless of α1 and α2, so Ψ is not a valid
CBF. What to do?

▶ Option 1: Nothing, except make sure α1 and α2 have
sufficient slope so that this is only a problem when x2 is
very large =⇒ practical, but lose theoretical guarantees

▶ Option 2: try a different high-order CBF h (next slide)

Lecture 25 Notes – ME6402, Spring 2025 12/16

Ψ(x)− x1x2 +α1(
1
2
(−x2

1 +L2))

Ψ̇(x) =−x2
2 + x1u

+α
′
1

(
1
2
(−x2

1 +L2)

)
(−x1x2)



Example 4

Same system: ẍ1 = u. Try

h(x) =
1
4
(−x4

1 +L4), ḣ(x) =−x3
1x2, ḧ(x) = 3x2

1x2
2 + x3u

Let

Ψ(x) = ḣ+ γ1h =−x3
1x2 +

γ1

4
(−x4

1 +L4)

Ψ̇(x) = ḧ+ γ1ḣ = 3x2
1x2

2 − x3
1u− γ1x3

1x2

Then, still, x3
1 = 0 whenever x1 = 0. But

Lf Ψ(x) = 3x2
1x2

2 − γ1x3
1x2

and therefore Lf Ψ= 0 whenever LgΨ= 0. This means Ψ satisfies
the CBF constraint sup

u
Lf Ψ(x)+LgΨ(x)u ≥−α2(Ψ(x)) for any

α2, and Ψ is a valid CBF.
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Accommodating Loss of Relative Degree

▶ What was the key in the previous example? A: Make sure
Lf Ψ = 0 whenever LgΨ = 0.

A systematic method for system with least relative degree r:

1 Let S = {x | LgLr−1
f h(x) = 0} (Recall that LgΨ = LgLr−1

f h)

2 If S is in the interior of C = {h(x)≥ 0}, find ε > 0 such
that S ⊆ {h(x)≥ ε}. (Else: method does not work)

3 Construct new h̃(x) that saturates to 1 as h(x)→ ε : Let
h̃(x) = σ(h(x)/ε) where σ is any r-differentiable function
satisfying: 

σ(0) = 0

σ(τ) = 1 for all τ ≥ 1

σ
′(τ)> 0 for all τ < 1
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▶ Tan, Cortez,
Dimarogonas,
“High-order Barrier
Functions: Robustness,
Safety and
Performance-Critical
Control”,
arXiv:2104.00101



Accommodating Loss of Relative Degree

▶ For homework and project, if needed, can take Option 1.
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Demo: Cart-Pole System with Restriction on θ

Try h(x) = L−θ .
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ÿ =
1

1+ sin2
θ

(
u+ θ̇

2 sinθ −gsinθ cosθ

)

θ̈ =
1

1+ sin2
θ

(
−ucosθ − θ̇

2 cosθ sinθ +2gsinθ

)


