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Ingenuity Flight, April 19, 2021
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Fig.7 Overall control architecture. Positions in the ground frame are denoted by [x; y; z]; velocities in the body
frame are denoted by [u;v; w]; Euler angles and angular rates with respect to the ground frame are denoted
by [¢; ;] and [p; ¢; r]. Commanded lower collective, lower cosine cyclic, and lower sine cyclic are denoted by
[6105 O1¢ 5 01515 similar for the upper controls. The symbols 6,, 8, 6, and &, denote linear combinations of the
control inputs to produce inputs aligned with the roll, pitch, heave, and yaw axes.
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https://www.nasa.gov/press-release/nasa-s-ingenuity-mars-helicopter-succeeds-in-historic-first-flight

Control Barrier Functions

Consider a control-affine system

i =f(x)+g(x)u
and a given set C = {x: h(x) > 0}. How can we choose a con-

troller u(x) such that C is positively invariant?
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Recall Barrier Functions (Last Lecture)

Definition: A function h with C = {x | h(x) > 0} is a barrier
function for x = f(x) if there exists a locally Lipschitz function
o : R — R satisfying a(0) = 0 such that

Vh(x)Tf(x) > —a(h(x)) for all x € R".
Using Lie derivative notation, recall VA(x)"f(x) = Lyh(x) = h(x).

Theorem: If & is a barrier function, then C = {x: h(x) > 0} is
positively invariant.
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» |n general, we think of o
as being an increasing
function, but this is not
needed for the theory on
the next slide.
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Control Barrier Functions

Definition: A function & with C = {x| h(x) > 0} is a control barrier > Control-affine system
function (CBF) for (2) if there exists a locally Lipschitz function
o : R — R satisfying a(0) = 0 such that

sup Vh(x)T (f(x) +g(x)u) > —a(h(x)) forall xcR". (1)
ucR™
We can also write (1) using Lie derivative notation:

seuﬂgn Lh(x) 4+ Loh(x)u > —ot(h(x))

F=f() g (2)

Define
U(x) = {u € R" | VA(x)"(f(x) + g(x)u) > —a(h(x))}.
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Invariance from CBF: Theorem

Theorem: If & is a control barrier function for (3), then the fol- > Control-affine system
lowing hold: i=f()+gu  (3)
® U(x) # 0 for all x; V) =

® Any Lipschitz feedback control u: R” — R™ satisfying S VTR = =G,

u(x) € U(x) renders C invariant;
® A feedback control is given by
0 if Va(x)"f(x)+ a(h(x)) >0

S0~ ) o
[VhGTeg ) VAW

otherwise.

u'(x) =

A sufficient condition for u*(x) to be Lipschitz on some
domain is that VA(x)"g(x) # 0 everywhere on the domain.
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Invariance from CBF: Proof

PrOOf > CBF condition:
Su; X T X X)u — X
© If sup Va(x)T(f(x) + g(x)u) < oo, then the sup is attained EVAEN e =Rt
ueRm

Theorem: If i is a control barrier function, then
for some u. the following hold:

@ U(x) #0 for all x;

~ . @ Any Lipschitz feedback control
F(x) =f(x)+ g(x)u(x) and theorem from previous lecture u: R = R™ satisfying u(x) € U(x)

renders C invariant;

@® h becomes a (regular) barrier function for

applies.

© A feedback control is given by
u*(x) =

0 if Va(x)"f(x) + ou(h(x)) > 0
—VA)TF() = (b)) g
VaTs@E o) )
otherwise.

A sufficient condition for u*(x) to be
Lipschitz on some domain is that
Vh(x)"g(x) # 0 everywhere on the

domain.
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Invariance from CBF: Proof

Proof > CBF condition:
. . Su; X T X X)u - X
© (Sketch) First, note that u”(x) is well-defined since 2R VM )+ 2 ~alb)

Vh(.x)Tg(X) 7é 0 Whenever h(x)Tf(x) + a(h(x)) < 0 by CBF Theorem: If & is a control barrier function, then

the following hold:

condition. u*(x) can be considered as a composition of 3 © U()£0 for all
Lipschitz functions and is therefore Lipschitz. Finally, it is @ Any Lipschitz feedback control
i u:R" — R™ satisfying u(x) € U(x)
easy to verlfy that renders C invariant;
V/’l(X)T(f(X) + g(X) Lt* (X) + a(h (X)) © A feedback control is given by
ut(x) =
Vh(x)Tf(x) 4+ o(h(x)) if VA(x)Tf(x) + o(h(x)) >0 0if vm;ﬂ(fwa(hgx» >0
= —VHW (@)~ () o
0 otherwise ZCIECI
otherwise.

A sufficient condition for u*(x) to be
2 0. Lipschitz on some domain is that
Vh(x)"g(x) # 0 everywhere on the

L] domain.
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Minimum Effort Control

Remark: From the above proof, specifically, the condition
VA(x)T (f (x) + g (x)u* (x) + et (h(x))
_ {Vh(X)Tf(X) +o(h(x)) if VA(x)f(x)+ a(h(x)) >0
0 otherwise,

we conclude that u*(x) is the “minimum effort” controller, i.e.,

* . 2
u* (x) = argmin,e gy [|ull3-
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Example: Cart-Pole System

Example: Recall the model of the cart-pole system from Lecture
16 (take m =M ={=1):

1 R
j=p=— [ u+6%sin0 — gsinOcosH
Y 1+sin26< 8 >

1 .
=— —ucos® — 6% cosBsin O +2gsin O
1 +sin” 0

where v =y is velocity. Take as the state x=[y v 8 6]7. Suppose
we want v to satisfy
—L<v<L.
Choose
M) = 5(—+12)
o(s)=ys, y>0.
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Example: Cart-Pole System

Then

v:mﬁ(u+ézsin9—gsinecose>
Vh(x)"f(x) = Lih(x) = ——5—— (6%sin® — gsin 6 cos 6 O = Sonosne o)
Vh(x)Tg(x) = L,h(x) = v
(9780 = Leh(a) =

o(h(x)) = Yh(x)
and u*(x) constructed as above.
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Example: Cart-Pole System

"=

The figures below show results for xo = [yo vo 6o 6o
[00 7/2 0]7 using the u*(x) from the theorem.

Barrier, v = 100
Barrier, y =1
No barrier, u = 0

4 T ‘
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Example: Cart-Pole System

"=

The figures below show results for xo = [yo vo 6o 6o
[00 7/2 0]7 using the u*(x) from the theorem.
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Example: Cart-Pole System

"=

The figures below show results for xo = [yo vo 6o 6o
[00 7/2 0]7 using the u*(x) from the theorem.
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Barrier, y = 100
Barrier, y =1
No barrier, u = 0
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Controller Synthesis as Optimization Problem

» u*(x) from theorem is often not the controller that's > CBF constraint:
T
implemented. VA" (F(3) + 8()u) > —au(h(x))
» The original intent, and still the primary use, of CBFs is to
protect other possibly unsafe controllers.

For fixed x, the CBF constraint is affine in u! Then we can
define a convex program to compute a control input at each
time instant:

u(x) =arg min  C(p,x)

subject to  VA(x)"f(x) + Vh(x) g(x)u > —a(h(x))
where C(ut,x) is convex in u for each fixed x.
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Example. Suppose k(x) : R" — R™ is some nominal feedback con-
troller designed for some other purpose (e.g., performance ob-
jectives). Can choose C(u,x) = ||u — k(x)||3. The result is a
quadratic program (with affine constraints) to compute u(x) at
each x.

> Raises questions about solving a QP in real-time online,
care must be taken with discretization values, etc.

» Convex solvers are fast enough that they can be included
“in-the-loop” and have been for applications like stable
bipedal locomotion, quadrotor control
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