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Ingenuity Flight, April 19, 2021
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▶ Video

https://www.nasa.gov/press-release/nasa-s-ingenuity-mars-helicopter-succeeds-in-historic-first-flight


Control Barrier Functions

Consider a control-affine system

ẋ = f (x)+g(x)u

and a given set C = {x : h(x) ≥ 0}. How can we choose a con-
troller u(x) such that C is positively invariant?
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Recall Barrier Functions (Last Lecture)

Definition: A function h with C = {x | h(x) ≥ 0} is a barrier
function for ẋ = f (x) if there exists a locally Lipschitz function
α : R→ R satisfying α(0) = 0 such that

∇h(x)T f (x)≥−α(h(x)) for all x ∈ Rn.

Using Lie derivative notation, recall ∇h(x)T f (x) = Lf h(x) = ḣ(x).

Theorem: If h is a barrier function, then C = {x : h(x) ≥ 0} is
positively invariant.
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▶ In general, we think of α

as being an increasing
function, but this is not
needed for the theory on
the next slide.



Control Barrier Functions

Definition: A function h with C= {x | h(x)≥ 0} is a control barrier
function (CBF) for (2) if there exists a locally Lipschitz function
α : R→ R satisfying α(0) = 0 such that

sup
u∈Rm

∇h(x)T(f (x)+g(x)u)≥−α(h(x)) for all x ∈ Rn. (1)

We can also write (1) using Lie derivative notation:

sup
u∈Rm

Lf h(x)+Lgh(x)u ≥−α(h(x))

Define

U(x) = {u ∈ Rm | ∇h(x)T(f (x)+g(x)u)≥−α(h(x))}.
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▶ Control-affine system

ẋ = f (x)+g(x)u (2)



Invariance from CBF: Theorem

Theorem: If h is a control barrier function for (3), then the fol-
lowing hold:

1 U(x) ̸= /0 for all x;

2 Any Lipschitz feedback control u : Rn → Rm satisfying
u(x) ∈ U(x) renders C invariant;

3 A feedback control is given by

u∗(x) =


0 if ∇h(x)T f (x)+α(h(x))≥ 0
−∇h(x)T f (x)−α(h(x))

∥∇h(x)Tg(x)∥2
2

(g(x)T
∇h(x))

otherwise.

A sufficient condition for u∗(x) to be Lipschitz on some
domain is that ∇h(x)Tg(x) ̸= 0 everywhere on the domain.
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▶ Control-affine system

ẋ = f (x)+g(x)u (3)

U(x) =

{u ∈ Rm | ∇h(x)T(f (x)+g(x)u)≥−α(h(x))}.



Invariance from CBF: Proof

Proof

1 If sup
u∈Rm

∇h(x)T(f (x)+g(x)u)< ∞, then the sup is attained

for some u.

2 h becomes a (regular) barrier function for
f̃ (x) = f (x)+g(x)u(x) and theorem from previous lecture
applies.
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▶ CBF condition:

sup
u∈Rm

∇h(x)T(f (x)+g(x)u)≥−α(h(x))

Theorem: If h is a control barrier function, then
the following hold:

1 U(x) ̸= /0 for all x;

2 Any Lipschitz feedback control
u : Rn → Rm satisfying u(x) ∈ U(x)
renders C invariant;

3 A feedback control is given by

u∗(x) =
0 if ∇h(x)T f (x)+α(h(x))≥ 0
−∇h(x)T f (x)−α(h(x))

∥∇h(x)T g(x)∥2
2

(g(x)T
∇h(x))

otherwise.

A sufficient condition for u∗(x) to be
Lipschitz on some domain is that
∇h(x)T g(x) ̸= 0 everywhere on the
domain.



Invariance from CBF: Proof

Proof

3 (Sketch) First, note that u∗(x) is well-defined since
∇h(x)Tg(x) ̸= 0 whenever h(x)T f (x)+α(h(x))< 0 by CBF
condition. u∗(x) can be considered as a composition of 3
Lipschitz functions and is therefore Lipschitz. Finally, it is
easy to verify that

∇h(x)T(f (x)+g(x)u∗(x)+α(h(x))

=

∇h(x)T f (x)+α(h(x)) if ∇h(x)T f (x)+α(h(x))≥ 0

0 otherwise

≥ 0.
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▶ CBF condition:

sup
u∈Rm

∇h(x)T(f (x)+g(x)u)≥−α(h(x))
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−∇h(x)T f (x)−α(h(x))

∥∇h(x)T g(x)∥2
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(g(x)T
∇h(x))

otherwise.

A sufficient condition for u∗(x) to be
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∇h(x)T g(x) ̸= 0 everywhere on the
domain.



Minimum Effort Control

Remark: From the above proof, specifically, the condition

∇h(x)T(f (x)+g(x)u∗(x)+α(h(x))

=

∇h(x)T f (x)+α(h(x)) if ∇h(x)T f (x)+α(h(x))≥ 0

0 otherwise,

we conclude that u∗(x) is the “minimum effort” controller, i.e.,
u∗(x) = argminu∈U(x)∥u∥2

2.
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Example: Cart-Pole System

Example: Recall the model of the cart-pole system from Lecture
16 (take m = M = ℓ= 1):

ÿ = v̇ =
1

1+ sin2
θ

(
u+ θ̇

2 sinθ −gsinθ cosθ

)

θ̈ =
1

1+ sin2
θ

(
−ucosθ − θ̇

2 cosθ sinθ +2gsinθ

)
where v= ẏ is velocity. Take as the state x= [y v θ θ̇ ]T . Suppose
we want v to satisfy

−L ≤ v ≤ L.
Choose

h(x) =
1
2
(−v2 +L2)

α(s) = γs, γ > 0.
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Example: Cart-Pole System

Then

∇h(x)T f (x) = Lf h(x) =
−v

1+ sin2(θ)

(
θ̇

2 sinθ −gsinθ cosθ
)

∇h(x)Tg(x) = Lgh(x) =
−v

1+ sin2(θ)

α(h(x)) = γh(x)

and u∗(x) constructed as above.
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v̇ =
1

1+ sin2
θ

(
u+ θ̇

2 sinθ −gsinθ cosθ

)

θ̈ =
1

1+ sin2
θ

(
−ucosθ − θ̇

2 cosθ sinθ +2gsinθ

)



Example: Cart-Pole System

The figures below show results for x0 = [y0 v0 θ0 θ̇0]
T =

[0 0 π/2 0]T using the u∗(x) from the theorem.
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Example: Cart-Pole System
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Controller Synthesis as Optimization Problem

▶ u∗(x) from theorem is often not the controller that’s
implemented.

▶ The original intent, and still the primary use, of CBFs is to
protect other possibly unsafe controllers.

For fixed x, the CBF constraint is affine in u! Then we can
define a convex program to compute a control input at each
time instant:

u(x) =arg min
µ

C(µ,x)

subject to ∇h(x)T f (x)+∇h(x)Tg(x)µ ≥−α(h(x))
where C(µ,x) is convex in µ for each fixed x.
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▶ CBF constraint:

∇h(x)T(f (x)+g(x)u)≥−α(h(x))



Example

Example. Suppose k(x) :Rn →Rm is some nominal feedback con-
troller designed for some other purpose (e.g., performance ob-
jectives). Can choose C(µ,x) = ∥µ − k(x)∥2

2. The result is a
quadratic program (with affine constraints) to compute u(x) at
each x.

▶ Raises questions about solving a QP in real-time online,
care must be taken with discretization values, etc.

▶ Convex solvers are fast enough that they can be included
“in-the-loop” and have been for applications like stable
bipedal locomotion, quadrotor control
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