Lecture 24 – ME6402, Spring 2025 Control Barrier Functions

Maegan Tucker

April 8, 2025

Goals of Lecture 24

Extend barrier functions to Control Barrier Functions

Additional Reading

▶ [A. Ames, S. Coogan, M.](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8796030) [Egerstedt, G. Notomista,](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8796030) [K. Sreenath, P.](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8796030) [Tabuada, "Control](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8796030) [Barrier Functions:](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8796030) [Theory and](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8796030) [Applications," IEEE](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8796030) [Transactions on](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8796030) [Automatic Control, 2019](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8796030)

Ingenuity Flight, April 19, 2021

Fig. 7 Overall control architecture. Positions in the ground frame are denoted by [x; y; z]; velocities in the body frame are denoted by $[u;v;w]$; Euler angles and angular rates with respect to the ground frame are denoted by $[\phi; \theta; \psi]$ and $[p; q; r]$. Commanded lower collective, lower cosine cyclic, and lower sine cyclic are denoted by $[\delta_{l0}; \delta_{lc}; \delta_{ls}]$; similar for the upper controls. The symbols δ_r , δ_n , δ_h , and δ_v denote linear combinations of the control inputs to produce inputs aligned with the roll, pitch, heave, and yaw axes.

▶ [Video](https://www.nasa.gov/press-release/nasa-s-ingenuity-mars-helicopter-succeeds-in-historic-first-flight)

Control Barrier Functions

Consider a control-affine system

 $\dot{x} = f(x) + g(x)u$

and a given set $C = \{x : h(x) \ge 0\}$. How can we choose a controller $u(x)$ such that C is positively invariant?

Recall Barrier Functions (Last Lecture)

Definition: A function *h* with $C = \{x \mid h(x) \ge 0\}$ is a barrier *function* for $\dot{x} = f(x)$ if there exists a locally Lipschitz function $\alpha : \mathbb{R} \to \mathbb{R}$ satisfying $\alpha(0) = 0$ such that

 $\nabla h(x)^T f(x) \geq -\alpha(h(x))$ for all $x \in \mathbb{R}^n$.

Using Lie derivative notation, recall $\nabla h(x)^T f(x) = L_f h(x) = \dot{h}(x)$.

Theorem: If *h* is a barrier function, then $C = \{x : h(x) \ge 0\}$ is positively invariant.

In general, we think of α as being an increasing function, but this is not needed for the theory on the next slide.

Control Barrier Functions

Definition: A function *h* with $C = \{x \mid h(x) \ge 0\}$ is a control barrier function (CBF) for [\(2\)](#page-4-0) if there exists a locally Lipschitz function $\alpha : \mathbb{R} \to \mathbb{R}$ satisfying $\alpha(0) = 0$ such that

 $\sup \ \nabla h(x)^T (f(x) + g(x)u) \geq -\alpha(h(x)) \quad \text{for all } x \in \mathbb{R}^n$ u ∈ \mathbb{R}^m . (1)

We can also write [\(1\)](#page-4-1) using Lie derivative notation:

$$
\sup_{u \in \mathbb{R}^m} L_f h(x) + L_g h(x) u \geq -\alpha(h(x))
$$

Define

$$
U(x) = \{u \in \mathbb{R}^m \mid \nabla h(x)^T (f(x) + g(x)u) \geq -\alpha(h(x))\}.
$$

Control-affine system

 $\dot{x} = f(x) + g(x)u$ (2)

Invariance from CBF: Theorem

Theorem: If *h* is a control barrier function for [\(3\)](#page-5-0), then the following hold:

- \bigcirc *U*(*x*) \neq *Ø* for all *x*;
- $\mathbf 2$ Any Lipschitz feedback control $u:\mathbb R^n\to \mathbb R^m$ satisfying $u(x) \in U(x)$ renders C invariant;
- ³ A feedback control is given by

$$
u^*(x) = \begin{cases} 0 \text{ if } \nabla h(x)^T f(x) + \alpha(h(x)) \ge 0 \\ \frac{-\nabla h(x)^T f(x) - \alpha(h(x))}{\|\nabla h(x)^T g(x)\|_2^2} (g(x)^T \nabla h(x)) \\ \text{otherwise.} \end{cases}
$$

A sufficient condition for $u^*(x)$ to be Lipschitz on some domain is that $\nabla h(x)^T g(x) \neq 0$ everywhere on the domain.

```
\blacktriangleright Control-affine system
                     \dot{x} = f(x) + g(x)u (3)
U(x) ={u \in \mathbb{R}^m \mid \nabla h(x)^T (f(x) + g(x)u) \ge -\alpha(h(x))}.
```
Proof

- \blacksquare If $\sup \nabla h(x)^T(f(x)+g(x)u)<\infty,$ then the sup is attained *u*∈R*^m* for some *u*.
- 2 *h* becomes a (regular) barrier function for $ilde{f}(x) = f(x) + g(x)u(x)$ and theorem from previous lecture applies.

▶ CBE condition:

 $\sup_{u \in \mathbb{R}^m} \nabla h(x) \cdot f(x) + g(x)u \geq -\alpha(h(x))$

Theorem: If *^h* is a control barrier function, then the following hold:

- $\bigoplus U(x) \neq \emptyset$ for all *x*;
- **2** Any Lipschitz feedback control $u: \mathbb{R}^n \to \mathbb{R}^m$ satisfying $u(x) \in U(x)$ renders ℓ invariant:
- ³ A feedback control is given by

$$
u^*(x) =
$$

\n
$$
\begin{cases}\n0 \text{ if } \nabla h(x)^T f(x) + \alpha(h(x)) \ge 0 \\
-\nabla h(x)^T f(x) - \alpha(h(x)) \\
\frac{\nabla h(x)^T g(x)\|_2^2}{\|\nabla h(x)^T g(x)\|_2^2} (g(x)^T \nabla h(x)) \\
\text{otherwise.} \n\end{cases}
$$

A sufficient condition for $u^*(x)$ to be Lipschitz on some domain is that $\nabla h(x)^T g(x) \neq 0$ everywhere on the domain.

Proof

 \bullet (Sketch) First, note that $u^*(x)$ is well-defined since $\nabla h(x)^T g(x) \neq 0$ whenever $h(x)^T f(x) + \alpha(h(x)) < 0$ by CBF condition. $u^*(x)$ can be considered as a composition of 3 Lipschitz functions and is therefore Lipschitz. Finally, it is easy to verify that

$$
\nabla h(x)^T (f(x) + g(x)u^*(x) + \alpha(h(x)))
$$

=
$$
\begin{cases} \nabla h(x)^T f(x) + \alpha(h(x)) & \text{if } \nabla h(x)^T f(x) + \alpha(h(x)) \ge 0 \\ 0 & \text{otherwise} \end{cases}
$$

 $> 0.$

▶ CBE condition:

$$
\sup_{u \in \mathbb{R}^m} \nabla h(x)^T (f(x) + g(x)u) \ge -\alpha(h(x))
$$

Theorem: If *^h* is a control barrier function, then the following hold:

- \bigoplus *U*(*x*) \neq *0* for all *x*:
- **2** Any Lipschitz feedback control $u: \mathbb{R}^n \to \mathbb{R}^m$ satisfying $u(x) \in U(x)$ renders ℓ invariant:
- ³ A feedback control is given by

$$
u^*(x) =
$$
\n
$$
\begin{cases}\n0 \text{ if } \nabla h(x)^T f(x) + \alpha(h(x)) \ge 0 \\
-\nabla h(x)^T f(x) - \alpha(h(x)) \\
\frac{-\nabla h(x)^T g(x)\|_2^2}{\|\nabla h(x)^T g(x)\|_2^2} (g(x)^T \nabla h(x)) \\
\text{otherwise.} \n\end{cases}
$$

A sufficient condition for $u^*(x)$ to be Lipschitz on some domain is that $\nabla h(x)^T g(x) \neq 0$ everywhere on the domain.

Minimum Effort Control

Remark: From the above proof, specifically, the condition $\nabla h(x)^T (f(x) + g(x)u^*(x) + \alpha (h(x)))$ = $\sqrt{ }$ $\left\vert \right\vert$ \mathcal{L} $\nabla h(x)^T f(x) + \alpha (h(x))$ if $\nabla h(x)^T f(x) + \alpha (h(x)) \geq 0$ 0 otherwise, we conclude that $u^*(x)$ is the "minimum effort" controller, *i.e.*, $u^*(x) = \text{argmin}_{u \in U(x)} ||u||_2^2.$

Example: Recall the model of the cart-pole system from Lecture 16 (take $m = M = \ell = 1$): $\ddot{y} = \dot{v} = \frac{1}{1 + \dot{v}}$ $1 + \sin^2 \theta$ $\sqrt{ }$ $u + \dot{\theta}^2 \sin \theta - g \sin \theta \cos \theta$ \setminus $\ddot{\theta} = \frac{1}{1 + x^2}$ $1 + \sin^2 \theta$ $\sqrt{ }$ $- u \cos \theta - \dot{\theta}^2 \cos \theta \sin \theta + 2g \sin \theta$ \setminus where v $=$ \dot{y} is velocity. Take as the state x $=$ $[y$ v θ $\dot{\theta}]^T$. Suppose we want *v* to satisfy

$$
-L\leq v\leq L.
$$

Choose

$$
h(x) = \frac{1}{2}(-\nu^2 + L^2)
$$

$$
\alpha(s) = \gamma s, \quad \gamma > 0.
$$

[Lecture 24 Notes – ME6402, Spring 2025](#page-0-0) 9/13

Then

$$
\nabla h(x)^T f(x) = L_f h(x) = \frac{-v}{1 + \sin^2(\theta)} (\dot{\theta}^2 \sin \theta - g \sin \theta \cos \theta)
$$

$$
\nabla h(x)^T g(x) = L_g h(x) = \frac{-v}{1 + \sin^2(\theta)}
$$

$$
\alpha(h(x)) = \gamma h(x)
$$
and $u^*(x)$ constructed as above.

 $\dot{v} = \frac{1}{1 + \sin^2 \theta}$

 $\ddot{\theta} = \frac{1}{1 + \sin^2 \theta}$

 $\left(u + \dot{\theta}^2 \sin \theta - g \sin \theta \cos \theta\right)$

 $\left(-u\cos\theta - \dot{\theta}^2\cos\theta\sin\theta + 2g\sin\theta \right)$

The figures below show results for $x_0 = [y_0 \quad v_0 \quad \theta_0 \quad \dot{\theta}_0]^T =$ $[0\ 0\ \pi/2\ 0]^T$ using the $u^*(x)$ from the theorem.

The figures below show results for $x_0 = [y_0 \quad v_0 \quad \theta_0 \quad \dot{\theta}_0]^T =$ $[0\ 0\ \pi/2\ 0]^T$ using the $u^*(x)$ from the theorem.

[Lecture 24 Notes – ME6402, Spring 2025](#page-0-0) 11/13

The figures below show results for $x_0 = [y_0 \quad v_0 \quad \theta_0 \quad \dot{\theta}_0]^T =$ $[0\ 0\ \pi/2\ 0]^T$ using the $u^*(x)$ from the theorem.

Controller Synthesis as Optimization Problem

- ► *u*^{*}(*x*) from theorem is often not the controller that's implemented.
- ▶ The original intent, and still the primary use, of CBFs is to protect other possibly unsafe controllers.

For fixed *x*, the CBF constraint is affine in *u*! Then we can define a convex program to compute a control input at each time instant:

$$
u(x) = \arg\min_{\mu} C(\mu, x)
$$

subject to $\nabla h(x)^T f(x) + \nabla h(x)^T g(x) \mu \geq -\alpha(h(x))$ where $C(\mu, x)$ is convex in μ for each fixed x.

▶ CBE constraint:

 $\nabla h(x)^T$ (*f*(*x*) + *g*(*x*)*u*) ≥ – α (*h*(*x*))

Example

Example. Suppose $k(x): \mathbb{R}^n \to \mathbb{R}^m$ is some nominal feedback controller designed for some other purpose (e.g., performance objectives). Can choose $C(\mu, x) = \|\mu - k(x)\|_2^2$. The result is a quadratic program (with affine constraints) to compute $u(x)$ at each *x*.

- ▶ Raises questions about solving a QP in real-time online, care must be taken with discretization values, etc.
- ▶ Convex solvers are fast enough that they can be included "in-the-loop" and have been for applications like stable bipedal locomotion, quadrotor control