Lecture 24 – ME6402, Spring 2025 Control Barrier Functions

Maegan Tucker

April 8, 2025

Goals of Lecture 24

 Extend barrier functions to Control Barrier Functions

Additional Reading

 A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, P. Tabuada, "Control Barrier Functions: Theory and Applications," IEEE Transactions on Automatic Control, 2019

Ingenuity Flight, April 19, 2021

Fig. 7 Overall control architecture. Positions in the ground frame are denoted by [x; y; z]; tocities in the body frame are denoted by [u; y; w]; Euler angles and angular rates with respect to the ground frame are denoted by $[\phi; \theta; \psi]$ and [p; q; r]. Commanded lower collective, lower cosine cyclic, and lower sine cyclic are denoted by $[\delta_{00}, \delta_{12}, \delta_{13}]$, similar for the upper controls. The symbols δ_{r} , δ_{p} , δ_{n} , and δ_{y} denote linear combinations of the control inputs to produce inputs aligned with the roll, pitch, heave, and yaw axes.

Control Barrier Functions

Consider a control-affine system

 $\dot{x} = f(x) + g(x)u$

and a given set $C = \{x : h(x) \ge 0\}$. How can we choose a controller u(x) such that C is positively invariant?

Recall Barrier Functions (Last Lecture)

<u>Definition</u>: A function h with $C = \{x \mid h(x) \ge 0\}$ is a *barrier* function for $\dot{x} = f(x)$ if there exists a locally Lipschitz function $\alpha : \mathbb{R} \to \mathbb{R}$ satisfying $\alpha(0) = 0$ such that

 $abla h(x)^T f(x) \ge -\alpha(h(x)) \quad \text{for all } x \in \mathbb{R}^n.$

Using Lie derivative notation, recall $\nabla h(x)^T f(x) = L_f h(x) = \dot{h}(x)$.

<u>Theorem</u>: If *h* is a barrier function, then $C = \{x : h(x) \ge 0\}$ is positively invariant.

 In general, we think of α as being an increasing function, but this is not needed for the theory on the next slide.

Control Barrier Functions

<u>Definition</u>: A function h with $C = \{x \mid h(x) \ge 0\}$ is a *control barrier* function (CBF) for (2) if there exists a locally Lipschitz function $\alpha : \mathbb{R} \to \mathbb{R}$ satisfying $\alpha(0) = 0$ such that

$$\sup_{u \in \mathbb{R}^m} \nabla h(x)^T (f(x) + g(x)u) \ge -\alpha(h(x)) \quad \text{for all } x \in \mathbb{R}^n.$$
(1)

We can also write (1) using Lie derivative notation:

$$\sup_{u\in\mathbb{R}^m}L_fh(x)+L_gh(x)u\geq-\alpha(h(x))$$

Define

$$U(x) = \{ u \in \mathbb{R}^m \mid \nabla h(x)^T (f(x) + g(x)u) \ge -\alpha(h(x)) \}.$$

Control-affine system

 $\dot{x} = f(x) + g(x)u$ (2)

Invariance from CBF: Theorem

<u>Theorem</u>: If h is a control barrier function for (3), then the following hold:

- 1 $U(x) \neq \emptyset$ for all x;
- ② Any Lipschitz feedback control $u : \mathbb{R}^n \to \mathbb{R}^m$ satisfying $u(x) \in U(x)$ renders C invariant;
- 3 A feedback control is given by

$$u^*(x) = \begin{cases} 0 \text{ if } \nabla h(x)^T f(x) + \alpha(h(x)) \ge 0\\ -\nabla h(x)^T f(x) - \alpha(h(x))\\ \|\nabla h(x)^T g(x)\|_2^2 (g(x)^T \nabla h(x))\\ \text{ otherwise.} \end{cases}$$

A sufficient condition for $u^*(x)$ to be Lipschitz on some domain is that $\nabla h(x)^T g(x) \neq 0$ everywhere on the domain.

Control-affine system $\dot{x} = f(x) + g(x)u$ (3) U(x) =

 $\{u \in \mathbb{R}^m \mid \nabla h(x)^T (f(x) + g(x)u) \ge -\alpha(h(x))\}.$

Proof

- 1 If $\sup_{u \in \mathbb{R}^m} \nabla h(x)^T (f(x) + g(x)u) < \infty$, then the sup is attained for some u.
- 2 *h* becomes a (regular) barrier function for $\tilde{f}(x) = f(x) + g(x)u(x)$ and theorem from previous lecture applies.

CBF condition:

 $\sup_{u\in\mathbb{R}^m}\nabla h(x)^T(f(x)+g(x)u)\geq -\alpha(h(x))$

<u>Theorem:</u> If h is a control barrier function, then the following hold:

- 1 $U(x) \neq \emptyset$ for all x;
- ② Any Lipschitz feedback control $u: \mathbb{R}^n \to \mathbb{R}^m$ satisfying $u(x) \in U(x)$ renders C invariant;
- 3 A feedback control is given by

$$\begin{split} u^*(x) &= \\ \begin{cases} 0 \text{ if } \nabla h(x)^T f(x) + \alpha(h(x)) \geq 0 \\ -\nabla h(x)^T f(x) - \alpha(h(x)) \\ \|\nabla h(x)^T g(x)\|_2^2 \\ (g(x)^T \nabla h(x)) \\ 0 \text{ otherwise.} \end{cases} \end{cases}$$

A sufficient condition for $u^*(x)$ to be Lipschitz on some domain is that $\nabla h(x)^T g(x) \neq 0$ everywhere on the domain. Proof

3 (Sketch) First, note that $u^*(x)$ is well-defined since $\nabla h(x)^T g(x) \neq 0$ whenever $h(x)^T f(x) + \alpha(h(x)) < 0$ by CBF condition. $u^*(x)$ can be considered as a composition of 3 Lipschitz functions and is therefore Lipschitz. Finally, it is easy to verify that

$$\begin{aligned} \nabla h(x)^T (f(x) + g(x)u^*(x) + \alpha(h(x)) \\ &= \begin{cases} \nabla h(x)^T f(x) + \alpha(h(x)) & \text{if } \nabla h(x)^T f(x) + \alpha(h(x)) \geq 0 \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

 $\geq 0.$

CBF condition:

 $\sup_{u\in\mathbb{R}^m}\nabla h(x)^T(f(x)+g(x)u)\geq -\alpha(h(x))$

<u>Theorem:</u> If h is a control barrier function, then the following hold:

- 1 $U(x) \neq \emptyset$ for all x;
- 2 Any Lipschitz feedback control $u : \mathbb{R}^n \to \mathbb{R}^m$ satisfying $u(x) \in U(x)$ renders C invariant;
- (3) A feedback control is given by

$$\begin{split} u^*(x) &= \\ \begin{cases} 0 \text{ if } \nabla h(x)^T f(x) + \alpha(h(x)) \geq 0 \\ \frac{-\nabla h(x)^T f(x) - \alpha(h(x))}{\|\nabla h(x)^T g(x)\|_2^2} (g(x)^T \nabla h(x)) \\ \|\nabla h(x)^T g(x)\|_2^2 \text{ otherwise.} \end{cases}$$

A sufficient condition for $u^*(x)$ to be Lipschitz on some domain is that $\nabla h(x)^T g(x) \neq 0$ everywhere on the domain.

Minimum Effort Control

$$\begin{split} & \underline{\text{Remark:}} \text{ From the above proof, specifically, the condition} \\ & \nabla h(x)^T (f(x) + g(x) u^*(x) + \alpha(h(x))) \\ & = \begin{cases} \nabla h(x)^T f(x) + \alpha(h(x)) & \text{if } \nabla h(x)^T f(x) + \alpha(h(x)) \geq 0 \\ 0 & \text{otherwise,} \end{cases} \\ & \text{we conclude that } u^*(x) \text{ is the "minimum effort" controller, } i.e., \\ & u^*(x) = \arg\min_{u \in U(x)} \|u\|_2^2. \end{split}$$

Example: Recall the model of the cart-pole system from Lecture 16 (take $m = M = \ell = 1$): $\ddot{y} = \dot{v} = \frac{1}{1 + \sin^2 \theta} \left(u + \dot{\theta}^2 \sin \theta - g \sin \theta \cos \theta \right)$ $\ddot{\theta} = \frac{1}{1 + \sin^2 \theta} \left(-u \cos \theta - \dot{\theta}^2 \cos \theta \sin \theta + 2g \sin \theta \right)$ where $v = \dot{y}$ is velocity. Take as the state $x = [y \ v \ \theta \ \dot{\theta}]^T$. Suppose we want v to satisfy

$$-L \leq v \leq L.$$

Choose

$$h(x) = \frac{1}{2}(-v^2 + L^2)$$

$$\alpha(s) = \gamma s, \quad \gamma > 0.$$

Lecture 24 Notes - ME6402, Spring 2025

Then

$$\nabla h(x)^T f(x) = L_f h(x) = \frac{-\nu}{1 + \sin^2(\theta)} \left(\dot{\theta}^2 \sin \theta - g \sin \theta \cos \theta \right)$$
$$\nabla h(x)^T g(x) = L_g h(x) = \frac{-\nu}{1 + \sin^2(\theta)}$$
$$\alpha(h(x)) = \gamma h(x)$$
and $u^*(x)$ constructed as above.

$$\begin{split} \dot{v} &= \frac{1}{1 + \sin^2 \theta} \left(u + \theta^2 \sin \theta - g \sin \theta \cos \theta \right) \\ \ddot{\theta} &= \frac{1}{1 + \sin^2 \theta} \left(-u \cos \theta - \dot{\theta}^2 \cos \theta \sin \theta + 2g \sin \theta \right) \end{split}$$

The figures below show results for $x_0 = [y_0 \ v_0 \ \theta_0 \ \dot{\theta}_0]^T = [0 \ 0 \ \pi/2 \ 0]^T$ using the $u^*(x)$ from the theorem.

The figures below show results for $x_0 = [y_0 \ v_0 \ \theta_0 \ \dot{\theta}_0]^T = [0 \ 0 \ \pi/2 \ 0]^T$ using the $u^*(x)$ from the theorem.

The figures below show results for $x_0 = [y_0 \ v_0 \ \theta_0 \ \dot{\theta}_0]^T = [0 \ 0 \ \pi/2 \ 0]^T$ using the $u^*(x)$ from the theorem.

Controller Synthesis as Optimization Problem

- u^{*}(x) from theorem is often not the controller that's implemented.
- The original intent, and still the primary use, of CBFs is to protect other possibly unsafe controllers.

For fixed x, the CBF constraint is *affine* in u! Then we can define a *convex* program to compute a control input at each time instant:

$$u(x) = \arg \min_{\mu} C(\mu, x)$$

subject to $\nabla h(x)^T f(x) + \nabla h(x)^T g(x) \mu \ge -\alpha(h(x))$ where $C(\mu, x)$ is convex in μ for each fixed x. CBF constraint:

 $\nabla h(x)^T (f(x) + g(x)u) \ge -\alpha(h(x))$

Example

Example. Suppose $k(x) : \mathbb{R}^n \to \mathbb{R}^m$ is some nominal feedback controller designed for some other purpose (e.g., performance objectives). Can choose $C(\mu, x) = \|\mu - k(x)\|_2^2$. The result is a quadratic program (with affine constraints) to compute u(x) at each x.

- Raises questions about solving a QP in real-time online, care must be taken with discretization values, etc.
- Convex solvers are fast enough that they can be included "in-the-loop" and have been for applications like stable bipedal locomotion, quadrotor control