Lecture 23 – ME6402, Spring 2025 *Barrier Functions*

Maegan Tucker

April 3, 2025

Goals of Lecture 23

- Introduce Comparison Lemma
- Define Barrier Functions

Additional Reading

 A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, P. Tabuada, "Control Barrier Functions: Theory and Applications," IEEE Transactions on Automatic Control, 2019

Barrier Functions

For $\dot{x} = f(x)$, recall from lecture 5 that we can check positive invariance of a set C by checking that $n(x)^T f(x) \leq 0$ for all x on the boundary of C where n(x) is an outward pointing normal vector to the set C.

Barrier Functions

If $C = \{x \mid h(x) \ge 0\}$ for some continuously differentiable function h, then $n(x) = -\nabla h(x)$ whenever $\nabla h(x) \ne 0$, and then the previous condition becomes:

 $\nabla h(x)^T f(x) \ge 0$ for all x such that h(x) = 0.

However, there are (at least) two potential problems with this approach:

- What if we have a function for which ∇h(x) = 0 for some x on the boundary of C?
- Above condition is only at the boundary and is not good for creating controllers (everything is fine until suddenly it's not)

Barrier Functions

Intuitive idea of barriers: make sure the system "slows down" as it approaches the boundary of \mathcal{C} .

- ▶ This lecture: barrier functions for autonomous systems
- Next lecture: control barrier functions for control-affine systems

Barrier Function: A Definition

<u>Definition</u>: A function h with $C = \{x \mid h(x) \ge 0\}$ is a *barrier* function for $\dot{x} = f(x)$ if there exists a locally Lipschitz function $\alpha : \mathbb{R} \to \mathbb{R}$ satisfying $\alpha(0) = 0$ such that

 $abla h(x)^T f(x) \ge -\alpha(h(x)) \quad \text{for all } x \in \mathbb{R}^n.$

Using Lie derivative notation, recall $\nabla h(x)^T f(x) = L_f h(x) = \dot{h}(x)$.

- In general, we think of α as being an increasing function, but this is not needed for the theory on the next slide.
- Discussion of "local Lipschitz" requirement at end of lecture.

When α is also increasing, it is sometimes called an *extended class* \mathcal{K} *function*; recall our definition of class \mathcal{K} functions from Lecture 12

Invariance from Barrier Functions

<u>Theorem</u>: If *h* is a barrier function, then $C = \{x : h(x) \ge 0\}$ is positively invariant.

Proof relies on the following lemma:

Lemma (Comparison lemma): Consider the scalar system

 $\dot{z} = g(z), \quad z(0) = z_0$

with locally Lipschitz g. Let v(t) be some continuously differentiable function satisfying

 $\dot{v}(t)\geq g(v(t)) \mbox{ for all } t\geq 0, \mbox{ and } v(0)\geq z_0.$ Then $v(t)\geq z(t)$ for all t.

Lecture 23 Notes - ME6402, Spring 2025

Proof of Theorem

Proof of barrier theorem:

1 Let x(t) be any system trajectory such that $x(0) \in C$ and define v(t) = h(x(t)). Then $\dot{v}(t) = \nabla h(x(t))^T f(x(t)) \ge -\alpha(h(x(t)) = -\alpha(v(t)), \text{ i.e.,}$ $\dot{v}(t) \ge -\alpha(v(t)).$

② Note that $z(t) \equiv 0$ is a trajectory of $\dot{z} = -\alpha(z)$ since the initial condition z(0) = 0 is an equilibrium. Since $v(t) \ge z(0)$, by the Comparison Lemma, $v(t) \ge z(t) = 0$ for all $t \ge 0$, which means $x(t) \in C$ for all $t \ge 0$.

Example: Consider

$$\dot{x}_1 = (a - (x_1^2 + x_2^2))x_1 - x_2$$
$$\dot{x}_2 = (a - (x_1^2 + x_2^2))x_2 + x_1$$

In polar coordinates,

$$\dot{r} = r(a - r^2), \quad \dot{\theta} = 1.$$

Example (cont)

Let
$$C = \{x : h(x) \ge 0\}$$
 with $h(x) = a - (x_1^2 + x_2^2)$. Then $\dot{h}(x) =$

$$\dot{x}_1 = (a - (x_1^2 + x_2^2))x_1 - x_2$$
$$\dot{x}_2 = (a - (x_1^2 + x_2^2))x_2 + x_1$$

In polar coordinates,

$$\dot{r} = r(a - r^2),$$

$$\dot{\theta} = 1.$$

Example (cont)

Let
$$C = \{x : h(x) \ge 0\}$$
 with $h(x) = a - (x_1^2 + x_2^2)$. Then
 $\dot{h}(x) = \nabla h(x)^T f(x) = 2(h(x) - a)h(x)$.

Take

 $\dot{x}_1 = (a - (x_1^2 + x_2^2))x_1 - x_2$ $\dot{x}_2 = (a - (x_1^2 + x_2^2))x_2 + x_1.$

In polar coordinates,

$$\dot{r} = r(a - r^2),$$

$$\dot{\theta} = 1.$$

Lecture 23 Notes - ME6402, Spring 2025

Example: Suppose V(x) is a Lyapunov function for the system $\dot{x} = f(x)$. Take h(x) = C - V(x) for some C. Then $C = \{x \mid h(x) \ge 0\} = \{x \mid V(x) \le C\}$

We take $\alpha(s) = 0$ and establish positive invariance for C, a sublevel set of V. This choice of α means that trajectories never move closer to the boundary of C, as expected from Lyapunov theory.

Example: Consider

$$\dot{x}_1 = (-a + bx_2^2)x_1$$

 $\dot{x}_2 = (cx_1^2 - d)x_2.$

We want to show that the union of the 1st and 3rd quadrants is invariant, *i.e.*, $C = \{(x_1, x_2) \mid h(x) \ge 0\}$ with $h(x) = x_1x_2$. We have

$$\dot{h}(x) = \nabla h(x)^T f(x) = \dot{x}_1 x_2 + x_1 \dot{x}_2$$

= $x_1 x_2 (-a + bx_2^2) + x_1 x_2 (cx_1^2 - d).$
we that, since $(\sqrt{b}x_2 - \sqrt{c}x_1)^2 \ge 0$, then $bx_2^2 + cx_1^2 \ge 2\sqrt{b}cx_1^2$

Note that, since $(\sqrt{bx_2} - \sqrt{cx_1})^2 \ge 0$, then $bx_2^2 + cx_1^2 \ge 2\sqrt{bcx_1x_2}$ and therefore

$$\nabla h(x)^T f(x) \ge (-a - d + 2\sqrt{bc}h(x))h(x).$$
 Take $\alpha(s) = -(-a - d + 2s\sqrt{bc})s.$

Lecture 23 Notes - ME6402, Spring 2025

Example 3 (cont.)

Note that α(0) = 0, as required. α is not increasing, but this is not an issue.

Local Lipschitzness of α is required for the Comparison Lemma to apply:

Example: Take $\dot{x} = -1$, $h(x) = x^3$ so $C = \{x : h(x) \ge 0\}$. Then $\dot{h}(x) = -h'(x) = -3x^2 = -3h(x)^{2/3}$. It is tempting to take $\alpha(s) = 3s^{2/3}$, a well-defined function satisfying $\alpha(0) = 0$, and it is even increasing for $s \ge 0$. But it is not Lipschitz, and the comparison lemma does not apply.

Lecture 23 Notes - ME6402, Spring 2025

Further discussion of Lipschitzness

- ► It is possible to weaken Lipschitz condition: The key is to ensure that, even if the comparison system ż = -α(z) with z(0) = z₀ has multiple solutions, all solutions remain nonnegative.
- An alternative assumption is to require that ∇h(x) ≠ 0 whenever h(x) = 0 so that ∇h(x) always provides a valid normal vector and our original technique (sometimes called Nagumo's theorem) applies. Then, the Comparison Lemma is not required.
- For this alternative, the proof of invariance does not require any other properties of α besides α(0) = 0.
- Barriers are a hot topic, but beware that many papers fail to explicitly make either assumption.

See R. Konda, A. Ames, S. Coogan, "Characterizing safety: minimal barrier functions from scalar comparison systems," IEEE Control Systems Letters, 2020, for more details