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Goals of Lecture 22

▶ Introduce important
classes of convex
optimization problems

Additional Reading

▶ S. Boyd and L.
Vandenberghe, Convex
Optimization,
Cambridge University
Press, 2004.
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Recall from Lecture 21: Convex functions and sets

▶ A convex function f : Rn → R satisfies for all x,y and all
0 ≤ θ ≤ 1:

f (θx+(1−θ)y)≤ θ f (x)+(1−θ)f (y).

▶ A convex set C satisfies

whenever x1,x2 ∈ C, then θx1 +(1−θ)x2 ∈ C for all 0 ≤ θ ≤ 1.

x

Lecture 22 Notes – ME6402, Spring 2025 2/19



Example

The probability simplex is the set of vectors x ∈ Rn such that
x ≥ 0 and 1Tx = 1. It is a convex set:
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Example

The probability simplex is the set of vectors x ∈ Rn such that
x ≥ 0 and 1Tx = 1. It is a convex set:
Let x1 and x2 be two elements of the probability simplex. For
any 0 ≤ θ ≤ 1,

θx1 +(1−θ)x2 ≥ 0

and

1T (θx1 +(1−θ)x2) = θ1Tx1 +(1−θ)1Tx2 = θ +(1−θ) = 1.
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Example 2

The set of symmetric matrices in Rn×n is a vector space (what is
its dimension?). The subset of symmetric positive semidefinite
matrices is a convex subset of this vector space. In fact, for any
P.S.D. X1 and X2, and any θ1 ≥ 0 and θ2 ≥ 0, θ1X1 + θ2X2 is
P.S.D.:

xT(θ1X1 +θ2X2)x = θ1 xTX1x︸ ︷︷ ︸
≥0

+θ2 xTX2x︸ ︷︷ ︸
≥0

≥ 0

for all x.
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Convex Optimization

Recall the optimization problem:
minimize f0(x)

subject to fi(x)≤ 0, i = 1, . . . ,m
The above optimization problem is convex if f0 and all fi’s are
convex. In this case, the feasible set is a convex set.
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Example

Example: Least Squares is a convex optimization problem:

minimize ∥Ax−b∥2
2

We know ∥ · ∥2 is convex because it is a norm (example in last
lecture), ∥·∥2

2 is also convex (convince yourself of this), and com-
position with affine transformation preserves convexity (example
in last lecture).

▶ This is an unconstrained optimization problem since there
are no constraints.

▶ Optimization problems rarely have closed form solutions,
but the least squares problem does: x = (ATA)−1ATb
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Linear Optimization Programs (LP)

minimize cTx

subject to aT
i x ≤ bi, i = 1, . . . ,m.

▶ Linear programs are a class of optimization problems that
can be solved very efficiently

▶ If feasible set is compact, then vertices of feasible region
contain optimal points
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Quadratic Optimization Programs (QP)

Quadratic costs give rise to quadratic optimization problems
Quadratic programs (QP): Quadratic cost with affine constraints

minimize
1
2

xTPx+qTx+ r

subject to aT
i x ≤ bi, i = 1, . . . ,m

where P is positive semidefinite, P ⪰ 0.
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Quadratically Constrained Quadratic Optimization Programs (QCQP)

Quadratically constrained quadratic programs (QCQP):
Quadratic cost with quadratic constraints.

minimize
1
2

xTP0x+qT
0 x+ r0

subject to
1
2

xTPix+qT
i x+ ri, i = 1, . . . ,m

where all Pi’s are positive semidefinite.
Example: Least squares is a QP because ∥Ax−b∥2

2 = xTATAx−
2bTAx+bTb and ATA ⪰ 0.
Example: All LPs are QPs, all QPs are QCQPs.
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Second-Order Cone Programs (SOCP)

minimize f Tx

subject to ∥Aix+bi∥2 ≤ cT
i x+di, i = 1, . . . ,m

Example:

▶ If all ci’s are zero, then SOCP reduces to QCQP.

▶ If all Ai’s are zero, then SOCP reduces to LP.
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Linear matrix inequalities (LMIs) and semidefinite programs (SDPs)

A twist: Instead of scalar inequality (≤) in constraints, what if
we allowed for matrix inequality (⪯)?
First form:

minimize cTx

subject to x1F1 + x2F2 + . . .+ xnFn +G ⪯ 0
where F1, . . . ,Fn and G are all symmetric matrices.

▶ The inequality above is called a linear matrix inequality
(LMI).

▶ An optimization problem is a semidefinite program (SDP)
if the constraints are LMIs are the cost is linear

▶ When F1, . . . ,Fn and G are actually scalars, we recover a
standard affine constraint f Tx+g ≤ 0
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Linear matrix inequalities (LMIs) and semidefinite programs (SDPs)

We check that the constraint x1F1 + x2F2 + . . .+ xnFn +G ⪯ 0
leads to a convex feasible set:
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Linear matrix inequalities (LMIs) and semidefinite programs (SDPs)

We check that the constraint x1F1 + x2F2 + . . .+ xnFn +G ⪯ 0
leads to a convex feasible set: Let x1,x2, . . . ,xn and x̂1, x̂2, . . . , x̂n

be two sets satisfying the semidefinite inequality. Then

(θx1 +(1−θ)x̂1)F1 + . . .(θxn +(1−θ)x̂n)Fn +G

= θ(x1F1 + . . .+ xnFn +G)+(1−θ)(x̂1F1 + . . .+ x̂nFn +G)

⪯ 0
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Linear matrix inequalities (LMIs) and semidefinite programs (SDPs)

▶ Multiple LMIs can be combined into one LMI via block
diagonalization:

x1F1 + x2F2 + . . .+ xnFn +G ⪯ 0, and

x1F̂1 + x2F̂2 + . . .+ xnF̂n + Ĝ ⪯ 0
is same as

x1

[
F1 0
0 F̂1

]
+ . . .+ xn

[
Fn 0
0 F̂n

]
+

[
G 0
0 Ĝ

]
⪰ 0
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Linear matrix inequalities (LMIs) and semidefinite programs (SDPs)

Second form:
minimize trace(CX)

subject to trace(AiX) = bi, i = 1, . . . ,m

X ⪰ 0.

▶ These two forms can be shown to be equivalent.

▶ Seemingly more general constraints can be reduced to LMI
constraints of the form above.

▶ In particular, matrix variables that appear linearly in
semidefinite constraints are allowed.
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Linear matrix inequalities (LMIs) and semidefinite programs (SDPs)

Again check that the constraints trace(AiX) = bi, X ⪰ 0 leads to
a feasible set:
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Linear matrix inequalities (LMIs) and semidefinite programs (SDPs)

Again check that the constraints trace(AiX) = bi, X ⪰ 0 leads to
a feasible set: Let X1 and X2 both be feasible. Then

θX1 +(1−θ)X2 ⪰ 0

and

trace(Ai(θX1 +(1−θ)X2))

= θ trace(AiX1)+(1−θ)trace(AiX2) = bi

for all 0 ≤ θ ≤ 1.
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LMI Example

Example: The Lyapunov inequality is given by L(X) = ATX+XA,
and we know A is Hurwitz if and only if there exists X ≻ 0 such
that L(x) ≺ 0. L(X) is linear in X. To see that, consider X =

aX1 +bX2 and notice that

L(X) = AT(aX1 +bX2)+(aX1 +bX2)A

= a(ATX1 +X1A)+b(ATX2 +X2A)

= aL(X1)+bL(X2).

Thus L(X) ⪯ −εI for some ε > 0 is a LMI constraint in the
variable X.
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Example:

Consider ẋ = A(t)x where A(t) switches from among the set
{A1, . . . ,Am}
▶ Even if all Ai are Hurwitz, stability is not guaranteed.

▶ How could we prove asymptotic stability of x = 0?
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Example:

Consider ẋ = A(t)x where A(t) switches from among the set
{A1, . . . ,Am}
▶ Even if all Ai are Hurwitz, stability is not guaranteed.

▶ How could we prove asymptotic stability of x = 0?

One approach: Find a common Lyapunov function V(x) = xTPx
that works for all Ais. Pose as SDP:

minimizeP trace(P)

subject to PAi +AT
i P ⪯−εI, i = 1, . . . ,m

P ⪰ I.
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Solving convex optimization problems

Even though analytic solutions to convex optimization problems
rarely exist, solvers have become so good and so fast that it
is common to think of exact solutions to convex optimization
problems as being readily available.

▶ CVX, CVXPY, CVXOPT, YALMIP are all basic purpose
packages for solving convex optimization problems.

▶ Specialized functions such as MATLAB’s quadprog for
specific classes of problems (quadratic, in this case)
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Solving convex optimization problems

Example. CVX provides easy coding of convex optimization prob-
lems in MATLAB:

minimize ∥Ax−b∥2

subject to Cx ≤ d
translated as

cvx_begin
variable x(n)
minimize( norm( A * x - b, 2 ) )
subject to

C * x <= d
cvx_end
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