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Optimization Problems

We often encounter problems of the form > Of course, if we are

minimize, fo(x) instead interested in
] ) maximizing a function
subject to  f;(x) <0, i=1,....m P, e iy i
where: fo(x) = —fo(x) to change
» x € R" is an optimization variable, to a minimization
problem.

> fo is the objective function, and > Equality constraint

» fi(x) are constraint functions. f(x) =0 is allowed by
including two

constraints: f(x) <0 and
obtained by fo(x) on the feasible set. A point that achieves the —f(x) <o.

The optimal value of fy(x) is the (limit of the) smallest value

optimal value (i.e.,argmin) is an optimal point.
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Minimum effort stabilization from CLF:
Given system & = f(x) + g(x)u and CLF V(x), use optimization-
based controller

k(x) =argmin,  |jul?

subject to aa‘;(f(x) +g(x)u) < —€A(x),

» ¢ is user chosen
> A(x) is some positive definition function. A(x) = x"x or
A(x) = V(x) are common choices

> Generally cannot consider a strict inequality constraint
like V(x) <0, hence the need for €A(x)
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Example 2

Finding polynomial Lyapunov functions:

Given system i = f(x), solve
k(x) =argmin, 0
subject to  V(x) > gA(x) Vx

aa‘;f(x) < —gA(x) Vx
where, eg., x € R?, V(x) = cix + coxixy + caxind + caxi 0 +
C5x‘2‘ + csx? + ...t ep2Xx1 Hep—1X2+ ¢y
» No cost = feasibility question

> “Vx' = infinite, uncountable number of constraints
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Convex functions and sets

A convex function f : R" — R satisfies for all x,y and all 0 < 0 < 1:
f(6x+(1—0)y) < 0f(x)+(1-0)f ().

N
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Convex functions and sets
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f(x) = cTx for fixed c € R™: > Convexity:

f(6x+(1-6)y)
<Of(x)+(1-0)f(y).
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f(x) = cTx for fixed c € R™: > Convexity:
, f(6x+(1-6)y)
f(0x+(1-0)y) =c (6x+(1—-6)y) < 6f(x)+ (1= 6)f(7)-
=0cx+(1-6)cTy
= 0f(x) +(1-6)7(y),
so f is convex (satisfies the required inequality with equality for
all 6 €[0,1)).
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First Order and Second Order Tests for Convexity

Fact. When f is once differentiable, f is convex if and only if > The notation M > 0 or
FO) 2 f(x) +Vf(x)" (v —x) for all x,y. D

symmetric matrix M
Fact. When f is twice differentiable, f is convex if and only if means that M is positive

V2f(x) =0 for all x. (semi)definite
(PD/PSD). Recall that
M is PSD (respectively,
positive definite) if
xTMx > 0 (respectively,
xTMx > 0 for all x). In
previous lectures, we did
not use this additional
notation.
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Example 1

Example. Consider the quadratic function
1
flx)= ExTPx +q'x+r, p=PT

Then V?f(x) = P for all x, so quadratic functions are convex if
and only if P> 0, i.e., P is a positive semidefinite matrix.
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Example 2

Example. Any norm ||| : R" — R>q is convex: > Recall that a norm ||- ||
[0x-+(1 = 0)y1] < 10|+ (1~ 0)y] = Ol + (1 - )] s

O [x+yll < [l + [l
(Triangle inequality)

O |lax|| = |a x|
© if x| =0 then x=0
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Example 3

Example. If f is convex, then
g(x) =f(Ax+D)
is convex for any A, b:
8(6x+(1—-6)y) =f(A(6x+(1—-86)y)+b)
= ( (Ax+b) + (1 - 6)(Ay + b))
0f (Ax+b)+(1-6)f(Ay+D)
g() (1-6)g(y)-
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Convex Sets

A convex set C satisfies
whenever x,x; € C, then Ox;+(1—0)x; €C forall 0 <6 <1.

Convex Not convex
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Example: Convex Sets as Sublevel Sets of Convex Functions

Example. Any o-sublevel set Co = {x:f(x) < o} of a convex
function is convex.

Proof. Choose x,y € Cq so that f(x) < o and f(y) < a. By
convexity, f(0(x)+ (1—0)y) < o for any 0 < 6 <1, and hence
Ox+(1—0)y€ Cq. O

The converse does not hold.
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Convex Optimization

Optimization problem from Slide 2:

minimize  fo(x)

subject to  f;(x) <0, i=1,....m
The above optimization problem is convex if fj and all f;'s are
convex.

» In this case, the feasible set is a convex set.
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Example: Equality Constraints

Example: Convex optimization problems may include equality
constraints, but only if they are affine, i.e., of the form Ax+5=0.

Proof. To include an equality constraint f;(x) =0, we add f;(x) <

0 and —fi(x) <0 as inequality constraints. To be convex, we

require f(x) and —f(x) to be convex. The only such functions

are affine. To see this, we assume f; is differentiable. Then

convexity of f; and —f; means:

Fi) Z £ () + V) (v =)
and
—fiy) = ~filx) = V()T (v ),

so that fi(y) = fi(x) + V£i(x)T (y —x) for any x, y, i.e., f; is affine.

L]
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Feasibility of Convex Problems

Theorem: For a convex optimization problem, a feasible point x
is optimal if and only if Vfy(x)” (y —x) > 0 for all feasible y.
Proof. (if) Since fy is convex, for any x,y.

Jo) = folx) + Vfo(x)" (v —x).
Let x be a feasible point such that Vfy(x)"(y —x) > 0 for all
feasible y. Then for any feasible y # x, using (?7), fo(y) > fo(x)
and x is optimal.
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Feasibility of Convex Problems

Theorem: For a convex optimization problem, a feasible point x
is optimal if and only if Vfy(x)” (y —x) > 0 for all feasible y.
Proof. (only if) Now suppose x is optimal but there is some fea-
sible y such that Vfy(x)T (y—x) < 0. The point zg = 8y+ (1 —6)x
must also be feasible sincz? the feasible set is convex. For small
0. flze) <flx) since —5 fo(zo)le—o = Vio(z0)" (v =x)] gy =
Vo) (y—x) <0.

L]
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Optimality for Unconstrained Convex Optimization Problems

When all y are feasible, the above condition reduces to: x is
optimal if and only if

Vfo(x) =0.

Lecture 21 Notes — ME6402, Spring 2025 16/17



Consider
minimize 1 Tp T
X X Px+q x+r
where P = 0. Then x is optimal if and only if Px+¢=0. Three
cases:

® If g & Range(P), no solution. In this case, objective
function is unbounded (below)

@® If P is nonsingular (i.e.,P > 0), then x* = —P 4 is unique
solution

© If P is singular but ¢ € Range(P), then set of optimal
points is affine subspace {x | Px=—g}={x"+y|y€
Null(P),x* is any vector such that Px* = —g}.
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