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Goals of Lecture 21

▶ Define optimization
problems

▶ Define convex functions
and sets

▶ Define convex
optimization problems

Additional Reading

▶ S. Boyd and L.
Vandenberghe, Convex
Optimization,
Cambridge University
Press, 2004.
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Optimization Problems

We often encounter problems of the form
minimizex f0(x)

subject to fi(x)≤ 0, i = 1, . . . ,m
where:

▶ x ∈ Rn is an optimization variable,

▶ f0 is the objective function, and

▶ fi(x) are constraint functions.

The optimal value of f0(x) is the (limit of the) smallest value
obtained by f0(x) on the feasible set. A point that achieves the
optimal value (i.e.,argmin) is an optimal point.
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▶ Of course, if we are
instead interested in
maximizing a function
f̃0(x), we simply define
f0(x) =−f̃0(x) to change
to a minimization
problem.

▶ Equality constraint
f (x) = 0 is allowed by
including two
constraints: f (x)≤ 0 and
−f (x)≤ 0.



Example

Minimum effort stabilization from CLF:
Given system ẋ = f (x)+g(x)u and CLF V(x), use optimization-
based controller

k(x) =argminu ∥u∥2

subject to
∂V
∂x

(f (x)+g(x)u)≤−εA(x),

▶ ε is user chosen

▶ A(x) is some positive definition function. A(x) = xTx or
A(x) = V(x) are common choices

▶ Generally cannot consider a strict inequality constraint
like V̇(x)< 0, hence the need for εA(x)
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Example 2

Finding polynomial Lyapunov functions:
Given system ẋ = f (x), solve

k(x) =argminc 0

subject to V(x)≥ ε1A(x) ∀x

∂V
∂x

f (x)≤−ε2A(x) ∀x

where, e.g., x ∈ R2, V(x) = c1x4
1 + c2x3

1x2 + c3x2
1x2

2 + c4x1x3
2 +

c5x4
2 + c5x3

1 + . . .+ cn−2x1 + cn−1x2 + cn

▶ No cost =⇒ feasibility question

▶ “∀x” =⇒ infinite, uncountable number of constraints
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Convex functions and sets

A convex function f :Rn →R satisfies for all x,y and all 0≤ θ ≤ 1:

f (θx+(1−θ)y)≤ θ f (x)+(1−θ)f (y).

f (x)

f (y)

x

Lecture 21 Notes – ME6402, Spring 2025 5/17



Convex functions and sets

A convex function f :Rn →R satisfies for all x,y and all 0≤ θ ≤ 1:

f (θx+(1−θ)y)≤ θ f (x)+(1−θ)f (y).
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Example

f (x) = cTx for fixed c ∈ Rn:
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▶ Convexity:

f (θx+(1−θ)y)

≤ θ f (x)+(1−θ)f (y).



Example

f (x) = cTx for fixed c ∈ Rn:

f (θx+(1−θ)y) = cT(θx+(1−θ)y)

= θcTx+(1−θ)cTy

= θ f (x)+(1−θ)f (y),

so f is convex (satisfies the required inequality with equality for
all θ ∈ [0,1]).
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▶ Convexity:

f (θx+(1−θ)y)

≤ θ f (x)+(1−θ)f (y).



First Order and Second Order Tests for Convexity

Fact. When f is once differentiable, f is convex if and only if
f (y)≥ f (x)+∇f (x)T(y− x) for all x,y.

Fact. When f is twice differentiable, f is convex if and only if
∇

2f (x)⪰ 0 for all x.
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▶ The notation M ⪰ 0 or
M ≻ 0 for a square
symmetric matrix M
means that M is positive
(semi)definite
(PD/PSD). Recall that
M is PSD (respectively,
positive definite) if
xT Mx ≥ 0 (respectively,
xT Mx > 0 for all x). In
previous lectures, we did
not use this additional
notation.



Example 1

Example. Consider the quadratic function

f (x) =
1
2

xTPx+qTx+ r, P = PT

Then ∇
2f (x) = P for all x, so quadratic functions are convex if

and only if P ≥ 0, i.e., P is a positive semidefinite matrix.
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Example 2

Example. Any norm ∥ · ∥ : Rn → R≥0 is convex:

∥θx+(1−θ)y∥ ≤ ∥θx∥+∥(1−θ)y∥= θ∥x∥+(1−θ)∥y∥
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▶ Recall that a norm ∥ · ∥
satisfies:

1 ∥x+ y∥ ≤ ∥x∥+∥y∥
(Triangle inequality)

2 ∥ax∥= |a|∥x∥

3 if ∥x∥= 0 then x = 0



Example 3

Example. If f is convex, then

g(x) = f (Ax+b)

is convex for any A, b:

g(θx+(1−θ)y) = f (A(θx+(1−θ)y)+b)

= f (θ(Ax+b)+(1−θ)(Ay+b))

≤ θ f (Ax+b)+(1−θ)f (Ay+b)

= θg(x)+(1−θ)g(y).
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Convex Sets

A convex set C satisfies

whenever x1,x2 ∈ C, then θx1 +(1−θ)x2 ∈ C for all 0 ≤ θ ≤ 1.

Convex Not convex
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Example: Convex Sets as Sublevel Sets of Convex Functions

Example. Any α-sublevel set Cα = {x : f (x) ≤ α} of a convex
function is convex.
Proof. Choose x,y ∈ Cα so that f (x) ≤ α and f (y) ≤ α . By
convexity, f (θ(x)+(1−θ)y)≤ α for any 0 ≤ θ ≤ 1, and hence
θx+(1−θ)y ∈ Cα .

The converse does not hold.
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Convex Optimization

Optimization problem from Slide 2:
minimize f0(x)

subject to fi(x)≤ 0, i = 1, . . . ,m

The above optimization problem is convex if f0 and all fi’s are
convex.

▶ In this case, the feasible set is a convex set.
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Example: Equality Constraints

Example: Convex optimization problems may include equality
constraints, but only if they are affine, i.e., of the form Ax+b= 0.

Proof. To include an equality constraint fi(x) = 0, we add fi(x)≤
0 and −fi(x) ≤ 0 as inequality constraints. To be convex, we
require f (x) and −f (x) to be convex. The only such functions
are affine. To see this, we assume fi is differentiable. Then
convexity of fi and −fi means:

fi(y)≥ f (x)+∇fi(x)T(y− x)

and

− fi(y)≥−fi(x)−∇f (x)T(y− x),

so that fi(y) = fi(x)+∇fi(x)T(y−x) for any x, y, i.e., fi is affine.
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Feasibility of Convex Problems

Theorem: For a convex optimization problem, a feasible point x
is optimal if and only if ∇f0(x)T(y− x)≥ 0 for all feasible y.
Proof. (if) Since f0 is convex, for any x,y.

f0(y)≥ f0(x)+∇f0(x)T(y− x).

Let x be a feasible point such that ∇f0(x)T(y− x) ≥ 0 for all
feasible y. Then for any feasible y ̸= x, using (??), f0(y)≥ f0(x)
and x is optimal.
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Feasibility of Convex Problems

Theorem: For a convex optimization problem, a feasible point x
is optimal if and only if ∇f0(x)T(y− x)≥ 0 for all feasible y.
Proof. (only if) Now suppose x is optimal but there is some fea-
sible y such that ∇f0(x)T(y−x)< 0. The point zθ = θy+(1−θ)x
must also be feasible since the feasible set is convex. For small
θ , f (zθ ) < f (x) since

d
dθ

f0(zθ )|θ=0 = ∇f0(zθ )
T(y− x)

∣∣
θ=0 =

∇f0(x)T(y− x)< 0.
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Optimality for Unconstrained Convex Optimization Problems

When all y are feasible, the above condition reduces to: x is
optimal if and only if

∇f0(x) = 0.
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Example

Consider
minimizex

1
2

xTPx+qTx+ r

where P ⪰ 0. Then x is optimal if and only if Px+q = 0. Three
cases:

1 If q ̸∈ Range(P), no solution. In this case, objective
function is unbounded (below)

2 If P is nonsingular (i.e.,P ≻ 0), then x∗ =−P−1q is unique
solution

3 If P is singular but q ∈ Range(P), then set of optimal
points is affine subspace {x | Px =−q}= {x∗+ y | y ∈
Null(P),x∗ is any vector such that Px∗ =−q}.
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