Lecture 21 – ME6402, Spring 2025 A Brief Introduction to Convex Optimization

Maegan Tucker

March 27, 2025

Goals of Lecture 21

- Define optimization problems
- Define convex functions and sets
- ▶ Define convex optimization problems

Additional Reading

▶ [S. Boyd and L.](https://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf) [Vandenberghe,](https://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf) Convex [Optimization](https://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf), [Cambridge University](https://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf) [Press, 2004.](https://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf)

Optimization Problems

We often encounter problems of the form minimize_x $f_0(x)$ subject to $f_i(x) \leq 0$, $i = 1, \ldots, m$ where:

- ▶ $x \in \mathbb{R}^n$ is an optimization variable,
- \blacktriangleright f_0 is the objective function, and
- \blacktriangleright $f_i(x)$ are constraint functions.

The *optimal value* of $f_0(x)$ is the (limit of the) smallest value obtained by $f_0(x)$ on the *feasible set*. A point that achieves the optimal value (i.e.,argmin) is an optimal point.

Of course, if we are instead interested in maximizing a function $\tilde{f}_0(x)$, we simply define $f_0(x) = -f_0(x)$ to change to a minimization problem.

Equality constraint $f(x) = 0$ is allowed by including two constraints: $f(x) < 0$ and $-f(x) < 0.$

Minimum effort stabilization from CLF:

Given system $\dot{x} = f(x) + g(x)u$ and CLF $V(x)$, use optimizationbased controller

$$
k(x) = \operatorname{argmin}_{u} \qquad ||u||^2
$$

subject to
$$
\frac{\partial V}{\partial x}(f(x) + g(x)u) \le -\varepsilon A(x),
$$

- \blacktriangleright ε is user chosen
- \blacktriangleright *A*(*x*) is some positive definition function. *A*(*x*) = *x*^{*T*}*x* or $A(x) = V(x)$ are common choices
- \triangleright Generally cannot consider a strict inequality constraint like $\dot{V}(x) < 0$, hence the need for $\mathcal{E}A(x)$

Finding polynomial Lyapunov functions: Given system $\dot{x} = f(x)$, solve $k(x) = argmin_c$ 0 subject to $V(x) > \varepsilon_1 A(x)$ $\forall x$ ∂*V* $\frac{\partial^2 f}{\partial x^2}f(x) \leq -\varepsilon_2 A(x)$ $\forall x$ where, e.g., $x \in \mathbb{R}^2$, $V(x) = c_1x_1^4 + c_2x_1^3x_2 + c_3x_1^2x_2^2 + c_4x_1x_2^3 + c_5x_1x_2^2 + c_6x_1x_2^3$ $c_5x_2^4 + c_5x_1^3 + \ldots + c_{n-2}x_1 + c_{n-1}x_2 + c_n$

 \triangleright No cost \implies feasibility question

 \triangleright " $\forall x$ " \implies infinite, uncountable number of constraints

Convex functions and sets

A *convex function* $f : \mathbb{R}^n \to \mathbb{R}$ *satisfies for all* x, y *and all* $0 \le \theta \le 1$ *:* $f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y).$

Convex functions and sets

A *convex function* $f : \mathbb{R}^n \to \mathbb{R}$ *satisfies for all* x, y *and all* $0 \le \theta \le 1$ *:* $f(\theta x + (1-\theta)y) \leq \theta f(x) + (1-\theta)f(y).$

$$
f(x) = c^T x \text{ for fixed } c \in \mathbb{R}^n:
$$

▶ Convexity:

 $f(\theta x + (1-\theta)y)$ $\leq \theta f(x) + (1-\theta)f(y).$

$$
f(x) = c^T x
$$
 for fixed $c \in \mathbb{R}^n$:

$$
f(\theta x + (1 - \theta)y) = c^T(\theta x + (1 - \theta)y)
$$

= $\theta c^T x + (1 - \theta)c^T y$
= $\theta f(x) + (1 - \theta)f(y)$,

so *f* is convex (satisfies the required inequality with equality for all $\theta \in [0,1]$).

▶ Convexity:

 $f(\theta x + (1-\theta)y)$ $\leq \theta f(x) + (1-\theta)f(y).$

First Order and Second Order Tests for Convexity

Fact. When *f* is once differentiable, *f* is convex if and only if $f(y) \geq f(x) + \nabla f(x)^T (y - x)$ for all *x*, *y*.

Fact. When *f* is twice differentiable, *f* is convex if and only if $\nabla^2 f(x) \succeq 0$ for all *x*.

The notation $M \succeq 0$ or $M \succ 0$ for a square symmetric matrix *M* means that *M* is positive (semi)definite (PD/PSD). Recall that *M* is PSD (respectively, positive definite) if $x^T M x \geq 0$ (respectively, $x^T M x > 0$ for all *x*). In previous lectures, we did not use this additional notation.

Example. Consider the quadratic function

$$
f(x) = \frac{1}{2}x^T P x + q^T x + r, \qquad P = P^T
$$

Then $\nabla^2 f(x) = P$ for all *x*, so quadratic functions are convex if and only if $P \geq 0$, *i.e.*, *P* is a positive semidefinite matrix.

 $\overline{\mathsf{Example}}$. Any norm $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is convex: ∥θ*x*+ (1−θ)*y*∥ ≤ ∥θ*x*∥+∥(1−θ)*y*∥ = θ∥*x*∥+ (1−θ)∥*y*∥

- ▶ Recall that a norm ∥ · ∥ satisfies:
- \bigcup $||x+y|| \leq ||x|| + ||y||$ (Triangle inequality)
- **2** $||ax|| = |a| ||x||$
- **3** if $||x|| = 0$ then $x = 0$

Example. If *f* is convex, then

$$
g(x) = f(Ax + b)
$$

is convex for any *A*, *b*:

$$
g(\theta x + (1 - \theta)y) = f(A(\theta x + (1 - \theta)y) + b)
$$

= $f(\theta(Ax + b) + (1 - \theta)(Ay + b))$
 $\leq \theta f(Ax + b) + (1 - \theta)f(Ay + b)$
= $\theta g(x) + (1 - \theta)g(y).$

Convex Sets

A convex set C satisfies

whenever $x_1, x_2 \in \mathcal{C}$, then $\theta x_1 + (1 - \theta)x_2 \in \mathcal{C}$ for all $0 \le \theta \le 1$.

Example: Convex Sets as Sublevel Sets of Convex Functions

Example. Any α -sublevel set $C_{\alpha} = \{x : f(x) \leq \alpha\}$ of a convex function is convex.

Proof. Choose $x, y \in C_\alpha$ so that $f(x) \leq \alpha$ and $f(y) \leq \alpha$. By convexity, $f(\theta(x) + (1-\theta)y) \le \alpha$ for any $0 \le \theta \le 1$, and hence $\theta x + (1-\theta)y \in C_{\alpha}$. \Box

The converse does not hold.

Convex Optimization

Optimization problem from Slide 2:

```
minimize f_0(x)subject to f_i(x) \leq 0, i = 1, \ldots, m
```
The above optimization problem is *convex* if f_0 and all f_i 's are convex.

 \blacktriangleright In this case, the feasible set is a convex set.

Example: Equality Constraints

Example: Convex optimization problems may include equality constraints, but only if they are affine, *i.e.*, of the form $Ax + b = 0$.

Proof. To include an equality constraint $f_i(x) = 0$, we add $f_i(x)$ < 0 and $-f_i(x) \leq 0$ as inequality constraints. To be convex, we require $f(x)$ and $-f(x)$ to be convex. The only such functions are affine. To see this, we assume f_i is differentiable. Then convexity of f_i and $-f_i$ means:

$$
f_i(y) \ge f(x) + \nabla f_i(x)^T (y - x)
$$

and

$$
-f_i(y) \ge -f_i(x) - \nabla f(x)^T (y - x),
$$

so that $f_i(y) = f_i(x) + \nabla f_i(x)^T (y - x)$ for any *x*, *y*, *i.e.*, *f*_{*i*} is affine.

Feasibility of Convex Problems

Theorem: For a convex optimization problem, a feasible point *x* is optimal if and only if $\nabla f_0(x)^T(y\!-\!x)\geq 0$ for all feasible y . *Proof.* (if) Since f_0 is convex, for any x, y .

 $f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y - x).$

Let *x* be a feasible point such that $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible *y*. Then for any feasible $y \neq x$, using ([??](#page-16-0)), $f_0(y) > f_0(x)$ and *x* is optimal.

Feasibility of Convex Problems

Theorem: For a convex optimization problem, a feasible point *x* is optimal if and only if $\nabla f_0(x)^T(y\!-\!x)\geq 0$ for all feasible y . *Proof.* (only if) Now suppose x is optimal but there is some feasible *y* such that $\nabla f_0(x)^T(y-x) < 0$. The point $z_{\theta} = \theta y + (1-\theta)x$ must also be feasible since the feasible set is convex. For small **θ**, $f(zθ) < f(x)$ since $\frac{d}{dθ}f_0(zθ)|_{θ=0} = ∇f_0(zθ)^T(y-x)|_{θ=0}$ = $\nabla f_0(x)^T (y - x) < 0.$

 \Box

Optimality for Unconstrained Convex Optimization Problems

When all *y* are feasible, the above condition reduces to: *x* is optimal if and only if

 $\nabla f_0(x) = 0.$

Consider

minimize_x $\frac{1}{2}$ $\frac{1}{2}x^T P x + q^T x + r$ where $P \geq 0$. Then *x* is optimal if and only if $Px + q = 0$. Three cases:

- **1** If *q* ∉ Range(*P*), no solution. In this case, objective function is unbounded (below)
- 2 If P is nonsingular (i.e., $P \succ 0)$, then $x^* = -P^{-1}q$ is unique solution
- **3** If *P* is singular but $q \in \text{Range}(P)$, then set of optimal points is affine subspace $\{x \mid Px = -q\} = \{x^* + y \mid y \in$ Null (P) , x^* is any vector such that $Px^* = -q$.