Lecture 21 – ME6402, Spring 2025 A Brief Introduction to Convex Optimization

Maegan Tucker

March 27, 2025

Goals of Lecture 21

- Define optimization problems
- Define convex functions and sets
- Define convex optimization problems

Additional Reading

 S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

Optimization Problems

We often encounter problems of the form $\begin{array}{ll} \text{minimize}_x & f_0(x)\\ \text{subject to} & f_i(x) \leq 0, \qquad i=1,\ldots,m \end{array}$ where:

where:

- ▶ $x \in \mathbb{R}^n$ is an optimization variable,
- f_0 is the objective function, and
- $f_i(x)$ are constraint functions.

The optimal value of $f_0(x)$ is the (limit of the) smallest value obtained by $f_0(x)$ on the *feasible set*. A point that achieves the optimal value (*i.e.*, argmin) is an optimal point.

Of course, if we are instead interested in maximizing a function *f*₀(*x*), we simply define *f*₀(*x*) = −*f*₀(*x*) to change to a minimization problem.

Equality constraint f(x) = 0 is allowed by including two constraints: $f(x) \le 0$ and $-f(x) \le 0$.

Minimum effort stabilization from CLF:

Given system $\dot{x} = f(x) + g(x)u$ and CLF V(x), use optimizationbased controller

$$k(x) = \operatorname{argmin}_{u} ||u||^{2}$$

subject to $\frac{\partial V}{\partial x}(f(x) + g(x)u) \leq -\varepsilon A(x),$

- \blacktriangleright ε is user chosen
- A(x) is some positive definition function. A(x) = x^Tx or
 A(x) = V(x) are common choices
- Generally cannot consider a strict inequality constraint like V
 (x) < 0, hence the need for εA(x)</p>

Finding polynomial Lyapunov functions: Given system $\dot{x} = f(x)$, solve $k(x) = \operatorname{argmin}_{c} 0$ subject to $V(x) > \varepsilon_1 A(x) \ \forall x$ $\frac{\partial V}{\partial x} f(x) \le -\varepsilon_2 A(x) \ \forall x$ where, e.g., $x \in \mathbb{R}^2$, $V(x) = c_1 x_1^4 + c_2 x_1^3 x_2 + c_3 x_1^2 x_2^2 + c_4 x_1 x_2^3 + c_4 x_2^3 +$ $c_5x_2^4 + c_5x_1^3 + \ldots + c_{n-2}x_1 + c_{n-1}x_2 + c_n$

 \blacktriangleright No cost \implies feasibility question

• " $\forall x$ " \implies infinite, uncountable number of constraints

Lecture 21 Notes - ME6402, Spring 2025

Convex functions and sets

A convex function $f : \mathbb{R}^n \to \mathbb{R}$ satisfies for all x, y and all $0 \le \theta \le 1$: $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$

Convex functions and sets

A convex function $f : \mathbb{R}^n \to \mathbb{R}$ satisfies for all x, y and all $0 \le \theta \le 1$: $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$

$$f(x) = c^T x$$
 for fixed $c \in \mathbb{R}^n$:

Convexity:

 $f(\theta x + (1 - \theta)y)$ $\leq \theta f(x) + (1 - \theta)f(y).$

$$f(x) = c^T x$$
 for fixed $c \in \mathbb{R}^n$:

$$f(\theta x + (1 - \theta)y) = c^{T}(\theta x + (1 - \theta)y)$$
$$= \theta c^{T}x + (1 - \theta)c^{T}y$$
$$= \theta f(x) + (1 - \theta)f(y),$$

so f is convex (satisfies the required inequality with equality for all $\theta \in [0,1]).$

► Convexity:

 $f(\theta x + (1 - \theta)y)$ $\leq \theta f(x) + (1 - \theta)f(y).$

First Order and Second Order Tests for Convexity

<u>Fact.</u> When f is once differentiable, f is convex if and only if $f(y) \ge f(x) + \nabla f(x)^T (y-x)$ for all x, y.

<u>Fact.</u> When f is twice differentiable, f is convex if and only if $\nabla^2 f(x) \succeq 0$ for all x.

The notation $M \succeq 0$ or $M \succ 0$ for a square symmetric matrix Mmeans that *M* is *positive* (semi)definite (PD/PSD). Recall that M is PSD (respectively, positive definite) if $x^T M x > 0$ (respectively, $x^T M x > 0$ for all x). In previous lectures, we did not use this additional notation.

Example. Consider the quadratic function

$$f(x) = \frac{1}{2}x^T P x + q^T x + r, \qquad P = P^T$$

Then $\nabla^2 f(x) = P$ for all x, so quadratic functions are convex if and only if $P \ge 0$, *i.e.*, P is a positive semidefinite matrix.

Example. Any norm $\|\cdot\| : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is convex: $\|\theta x + (1-\theta)y\| \le \|\theta x\| + \|(1-\theta)y\| = \theta \|x\| + (1-\theta)\|y\|$

- Recall that a norm ||·|| satisfies:
- 1 $||x+y|| \le ||x|| + ||y||$ (Triangle inequality)
- **2** ||ax|| = |a|||x||
- **3** if ||x|| = 0 then x = 0

Example. If f is convex, then

$$g(x) = f(Ax + b)$$

is convex for any A, b:

$$g(\theta x + (1 - \theta)y) = f(A(\theta x + (1 - \theta)y) + b)$$

= $f(\theta(Ax + b) + (1 - \theta)(Ay + b))$
 $\leq \theta f(Ax + b) + (1 - \theta)f(Ay + b)$
= $\theta g(x) + (1 - \theta)g(y).$

Convex Sets

A convex set C satisfies whenever $x_1, x_2 \in C$, then $\theta x_1 + (1 - \theta)x_2 \in C$ for all $0 \le \theta \le 1$.

Example: Convex Sets as Sublevel Sets of Convex Functions

Example. Any α -sublevel set $C_{\alpha} = \{x : f(x) \le \alpha\}$ of a convex function is convex.

Proof. Choose $x, y \in C_{\alpha}$ so that $f(x) \leq \alpha$ and $f(y) \leq \alpha$. By convexity, $f(\theta(x) + (1 - \theta)y) \leq \alpha$ for any $0 \leq \theta \leq 1$, and hence $\theta x + (1 - \theta)y \in C_{\alpha}$.

The converse does *not* hold.

Convex Optimization

Optimization problem from Slide 2:

```
\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \qquad i=1,\ldots,m \end{array}
```

The above optimization problem is *convex* if f_0 and all f_i 's are convex.

▶ In this case, the feasible set is a convex set.

Example: Equality Constraints

<u>Example</u>: Convex optimization problems may include equality constraints, but only if they are affine, *i.e.*, of the form Ax + b = 0.

Proof. To include an equality constraint $f_i(x) = 0$, we add $f_i(x) \le 0$ and $-f_i(x) \le 0$ as inequality constraints. To be convex, we require f(x) and -f(x) to be convex. The only such functions are affine. To see this, we assume f_i is differentiable. Then convexity of f_i and $-f_i$ means:

$$f_i(y) \ge f(x) + \nabla f_i(x)^T (y - x)$$

and

$$-f_i(y) \ge -f_i(x) - \nabla f(x)^T (y - x),$$

so that $f_i(y) = f_i(x) + \nabla f_i(x)^T (y - x)$ for any $x, y, i.e., f_i$ is affine.

Feasibility of Convex Problems

<u>Theorem</u>: For a convex optimization problem, a feasible point x is optimal if and only if $\nabla f_0(x)^T (y-x) \ge 0$ for all feasible y. *Proof.* (if) Since f_0 is convex, for any x, y.

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y - x).$$

Let x be a feasible point such that $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y. Then for any feasible $y \ne x$, using (??), $f_0(y) \ge f_0(x)$ and x is optimal.

Feasibility of Convex Problems

<u>Theorem</u>: For a convex optimization problem, a feasible point x is optimal if and only if $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y. *Proof.* (only if) Now suppose x is optimal but there is some feasible y such that $\nabla f_0(x)^T(y-x) < 0$. The point $z_\theta = \theta y + (1-\theta)x$ must also be feasible since the feasible set is convex. For small θ , $f(z_\theta) < f(x)$ since $\frac{d}{d\theta} f_0(z_\theta)|_{\theta=0} = \nabla f_0(z_\theta)^T(y-x)|_{\theta=0} = \nabla f_0(x)^T(y-x) < 0$.

Optimality for Unconstrained Convex Optimization Problems

When all y are feasible, the above condition reduces to: x is optimal if and only if

 $\nabla f_0(x) = 0.$

Consider

minimize_x
$$\frac{1}{2}x^TPx + q^Tx + r$$

where $P \succeq 0$. Then x is optimal if and only if $Px + q = 0$. Three cases:

- If $q \notin \operatorname{Range}(P)$, no solution. In this case, objective function is unbounded (below)
- 2 If P is nonsingular (i.e., $P \succ 0$), then $x^* = -P^{-1}q$ is unique solution
- If P is singular but q ∈ Range(P), then set of optimal points is affine subspace {x | Px = -q} = {x* + y | y ∈ Null(P),x* is any vector such that Px* = -q}.