Lecture 20 — ME6402, Spring 2025 Goals of Lecture 20

) > Defi trol |
Control Lyapunov Functions ctine control yapunov

functions

> Present Sontag's

universal formula for
smooth stabilization
Maegan Tucker » Define small control
property
Additional Reading
» E. Sontag, 1983

> Z. Arstein, 1978

March 25, 2025



Lyapunov for Control Systems

Lyapunov analysis of Lecture 9: For system

find positive definite Lyapunov function V(x) such that V(x) is
negative definite to prove asym. stability of x =0.

What about controlling for stability?
» An idea: For
x=f(x)+g(x)u
and a candidate positive definite Lyapunov function V(x),
choose u such that V is negative definite

Lecture 20 Notes — ME6402, Spring 2025 2/15



Control Lyapunov Function

Consider
f = f(x) + g (1)
A positive definition  function V(x) is a (global)
control Lyapunov function (CLF) for (1) if
A%

for all x # 0, there exists u s.t. V(x):= 5 [f (x) +g(x)u] <O0.
X
Equivalently,
ov oV

ag(x):o and x#0 — 8xf(x)<0'

Lecture 20 Notes — ME6402, Spring 2025

» Be sure to convince
yourself that these two
statements are
equivalent.
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How to construct a controller from a CLF

If u e R, Sontag's formula:

REIRIEIREIINEY

u=¢(x)= £ oV

gg #0
Y
k0 if 58 =0

» Choosing u = ¢(x) asymptotically stabilizes the origin.
Proof is straightforward (next slide)

» Formula seems complicated. Why? (Examples)
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Proof of Sontag Formula

Compute V(x) for x # 0:
v

> If —

I g(x) =0, then

Vix) ‘sz(x) <0.

for any x £ 0 by definition of CLF
av

> |f 2
If axg(x) # 0, then

V() = 2V 170+ £)6 )] = \/ (‘3&)1 (‘;Zgy <0

Therefore, x # 0 implies V(x) < 0, which shows asymptotic sta-
bility.

> Why the squareroot? Why the quartic power?
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» Sontag's formula:

u=0(x)=

EREREINE

. 14

if g—xg #0

LoV
0 if 8 =0
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Example 1

Consider
i=—x+u
1
with CLF V(x) = Exz. Let's consider a few controllers:
®u=0
® u = ¢(x) from Sontag's formula

® Modify Sontag's formula by changing 4th power to 2nd
power

O Modify Sontag's formula by removing squareroot
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Example 1 (cont.)

F=—x+u, @ u= ¢(x) from Sontag's
, formula
u = ¢(x) from Sontag's formula

» Sontag's formula:

=90 =

|GG+ o) 32

» Does Sontag's formula
achieve exponential
stability in this case?
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Example 1 (cont.)

F=—x+u, @ u= ¢(x) from Sontag's
, formula
u = ¢(x) from Sontag's formula

» Sontag's formula:
=P —x/r 1

u=¢(x) =
Il
Jomrener |GG Gy | (3
if a—:g #0
0.2 0 “(59)-

—7 -6 -5—-4-3-2_1 > Does Sontag's formula

achieve exponential
stability in this case?
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Example 1 (cont.)

i=—x+u © Modify Sontag's formula

oV v \2 v \2 oV oV by changing 4th power
(axf)w (5) *(axg)]/ (5 (5] 20 to 2nd power

u=
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Example 1 (cont.)

: 3

X=—x"4u © Modify Sontag's formula
oV oV \2 oV \2 oV oy by changing 4th power
|G ¢ (5) +(5) 1 (Ger) 1 (Ge) 20 EREES
0 if a—vg> -0
X
= —x +sign(x) Va6 +1
Hcontroller
0.5
> X
-5 -4 -3 -2 -1 3 4 5
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Example 1 (cont.)

i=—x+u @ Modify Sontag's formula

[ () (5] () (3)
: i () -0

by removing squareroot
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Example 1 (cont.)

i=—x+u @ Modify Sontag's formula
PAY% AV \?2 ov \* ’A% _[aV by removing squareroot
. ‘[(axf)+(axf) +(axg)}/(axg) () 20
L [V
0 if ($g> =0
= —x7

> Extreme control action as x moves away from 0
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What Else Can Go Wrong?

1 )
Example: i = x+x*u with CLF V(x) = Exz. > Sontag's formula:

Sontag's formula: ‘=) =

o(x) = (@) &) 3] ()

. 14

if g—xg #0

LoV
0 if 8 =0
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What Else Can Go Wrong?

1 .
Example: x = x+ xu with CLF V(x) = Exz. > Sontag’s formula:
Sontag's formula: ‘=) =
8 2 4
oy VT ()BT
\ X if a—Zg #0
¢(x) 0 if %g =0
10
5
| X
-3 -2 —1 2 3
-10
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Small Control Property

Definition: The system x =f(x) + g(x)u along with the CLF V(x)
satisfies the small control property if for any € > 0 there exists
0 >0 such that if x# 0 and |x| < &, then there is u with |u| < €
such that

v

@) + 5] <0
Informally, small control effort is required to stay near the equi-
librium x = 0.

» Sufficient condition for small control property is that there
exists some Lipschitz continuous, stabilizing controller
u = k(x) such that V(x) is a Lyapunov function for

i =f(x) + g(x)k(x).
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CLF Theorem

Theorem. If f(x), g(x), and V(x) are continuously differentiable,
then controller ¢(x) from Sontag’s formula is continuously dif-
ferentiable for x # 0. |If, further, V(x) satisfies small control
property, then ¢(x) is also continuous at x = 0.
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Sontag's Formula vs Feedback Linearization: Example

Consider

x:x—x3+u.

» Feedback linearization:
u=k(x)=—x+x—ax, a>0
1
V(x) = §x2 is a Lyapunov function.

» Sontag's formula using same V(x):

u=0(x)=
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Sontag's Formula vs Feedback Linearization: Example

Consider

x:x—x3+u.

» Feedback linearization:
u=k(x)=—x+x—ax, a>0
1
V(x) = §x2 is a Lyapunov function.

» Sontag's formula using same V(x):
Cx(—x+x7) —xy /22 (x—x3)2 4 x*

u=0(x)= :

= —x+x =/ (1-x2)2+1
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Sontag's Formula vs Feedback Linearization: Example (cont.)

A /
- — u
- - - Feedback linearization ,:'
—— Sontag's formula 4 K
lI
2 J/
—_— e S — — X
-3 ) g | 2 3
S -2
,
’
1
; 4
’

> Sontag's formula can keep useful nonlinearities (like —x?),
while feedback linearization cancels all nonlinearities

» No universal theorem that Sontag's formula is always
“better”
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Robustness of Sontag's formula

Fact: if ¢(x) is from Sontag's formula, then u = k¢ (x) stabilizes
x =0 for any k> 1/2, and same V(x) is a Lyapunov function.
That is, Sontag's formula has a gain margin of [1/2,c0).
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