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Essentially Nonlinear Phenomena
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For linear systems, x(t) — oo cannot happen in finite time.
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Essentially Nonlinear Phenomena

® Multiple Isolated Equilibria
Linear systems: either unique equilibrium or a continuum
Pendulum: two isolated equilibria (one stable, one
unstable)
“Multi-stable” systems: two or more stable equilibria
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Essentially Nonlinear Phenomena: Ex. of Multiple Isolated Equilibria

Example: bistable switch

X1 = —ax;+x X1 : concentration of protein

Xy = 5 —bxy  xp: concentration of mRNA

1 +x7
a >0, b >0 are constants. State space: R>o X Rxo.
This model describes a positive feedback where the protein en-
coded by a gene stimulates more transcription via the term

2

X1

1 +x%

Single equilibrium at the origin when ab > 0.5. If ab < 0.5, the
line where &; = 0 intersects the sigmoidal curve where x, =0 at
two other points, giving rise to a total of three equilibria.
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Essentially Nonlinear Phenomena: Ex. of Multiple Isolated Equilibria (cont.)
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Essentially Nonlinear Phenomena

® Limit cycles: Linear oscillators exhibit a continuum of
periodic orbits; e.g., every circle is a periodic orbit for
X = Ax where
0 B
A= Mo =FjB).
[ B0 ] (M2 =FiB)
In contrast, a limit cycle is an isolated periodic orbit and

can occur only in nonlinear systems.
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Essentially Nonlinear Phenomena: Example of Limit Cycle

Example: van der Pol oscillator
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Essentially Nonlinear Phenomena

O Chaos: Irregular oscillations, never exactly repeating.
Example: Lorenz system (derived by Ed Lorenz in 1963 as
a simplified model of convection rolls in the atmosphere):

X = o(y—x)
y = mx—y—xz
7 = xy—bz

Chaotic behavior with 6 =10, b=28/3, r=28:
J

y(t) ' ..
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Essentially Nonlinear Phenomena: Chaos (cont.)

P For continuous-time, time-invariant systems, n > 3 state
variables required for chaos.
n=1: x(t) monotone in ¢, no oscillations:

f(x)
VAN

n=2: Poincaré-Bendixson Theorem (to be studied in

Lecture 4) guarantees regular behavior.
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Essentially Nonlinear Phenomena: Chaos (cont.)

» Poincaré-Bendixson does not apply to time-varying
systems and n > 2 is enough for chaos (for Van der Pol
oscillator can exhibit chaos).

» For discrete-time systems, n =1 is enough (we will see an

example in Lecture 6).
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Planar (Second Order) Dynamical Systems

Phase Portraits of Linear Systems: i = Ax

> Distinct real eigenvalues
M0

T-'AT=| "

0

In z=T"'x coordinates:

2z =Mz, 2=Mln.
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Phase Portraits of Linear Systems, Real Eigenvalues (cont.)

The equilibrium is called a node when A; and A, have the same
sign (stable node when negative and unstable when positive). It
is called a saddle point when A; and A, have opposite signs.
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Phase Portraits of Linear Systems, Complex Eigenvalues

» Complex eigenvalues: A, = aFjf
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Phase Portraits of Linear Systems, Complex Eigenvalues (cont.)

Complex eigenvalues:
Zy Zy V)
ﬁ“ Z1
NS
unstable

focus center

a<0 a>0 a=20

The phase portraits above assume 8 > 0 so that the direction
of rotation is counter-clockwise: 8 = 8 > 0.
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