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Goals of Lecture 2

▶ List several phenomena
unique to systems that
are not linear

▶ Phase portraits in the
plane

Additional Reading

▶ Khalil, Chapter 2
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Essentially Nonlinear Phenomena

1 Finite Escape Time
Example: ẋ = x2

d
dt

x−1 =−x−2ẋ =−1

⇒ 1
x(t)

− 1
x(0)

=−t

⇒ x(t) =
1

1
x(0) − t

For linear systems, x(t)→ ∞ cannot happen in finite time.
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Essentially Nonlinear Phenomena

1. Finite Escape Time

Example: ẋ = x2

d
dt

x�1 = �x�2 ẋ = �1

) 1
x(t)

� 1
x(0)

= �t

) x(t) =
1

1
x(0)

� t

(1)

t

x

x(0)

1
x(0)

For linear systems, x(t) ! • cannot happen in finite time.

2. Multiple Isolated Equilibria

Linear systems: either unique equilibrium or a continuum

Pendulum: two isolated equilibria (one stable, one unstable)

“Multi-stable” systems: two or more stable equilibria

Example: bistable switch

ẋ1 = �ax1 + x2 x1 : concentration of protein

ẋ2 =
x2

1
1+x2

1
� bx2 x2 : concentration of mRNA

(2)

a > 0, b > 0 are constants. State space: R�0 ⇥ R�0.

This model describes a positive feedback where the protein en-

coded by a gene stimulates more transcription via the term x2
1

1+x2
1
.

Single equilibrium at the origin when ab > 0.5. If ab < 0.5, the line
where ẋ1 = 0 intersects the sigmoidal curve where ẋ2 = 0 at two
other points, giving rise to a total of three equilibria:



Essentially Nonlinear Phenomena

2 Multiple Isolated Equilibria
Linear systems: either unique equilibrium or a continuum
Pendulum: two isolated equilibria (one stable, one
unstable)
“Multi-stable” systems: two or more stable equilibria
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Essentially Nonlinear Phenomena: Ex. of Multiple Isolated Equilibria

Example: bistable switch

ẋ1 =−ax1 + x2 x1 : concentration of protein

ẋ2 =
x2

1

1+ x2
1
−bx2 x2 : concentration of mRNA

a > 0, b > 0 are constants. State space: R≥0 ×R≥0.
This model describes a positive feedback where the protein en-
coded by a gene stimulates more transcription via the term

x2
1

1+ x2
1
.

Single equilibrium at the origin when ab > 0.5. If ab < 0.5, the
line where ẋ1 = 0 intersects the sigmoidal curve where ẋ2 = 0 at
two other points, giving rise to a total of three equilibria.
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Essentially Nonlinear Phenomena: Ex. of Multiple Isolated Equilibria (cont.)
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x1

x2

ẋ1 = 0
ẋ2 = 0

stable
(gene on)

stable
(gene off)

unstable
(saddle point)

3. Limit cycles: Linear oscillators exhibit a continuum of periodic
orbits; e.g., every circle is a periodic orbit for ẋ = Ax where

A =

"
0 �b

b 0

#
(l1,2 = ⌥jb).

In contrast, a limit cycle is an isolated periodic orbit and can occur
only in nonlinear systems.

limit cycleharmonic
oscillator

Example: van der Pol oscillator

Cv̇C = �iL + vC � v3
C

Li̇L = vC

iL

LC
+

�
vC

iR

vC

iR = �vC + v3
C

"negative resistance"
^^

iL

vC
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ẋ1 =−ax1 + x2

ẋ2 =
x2

1
1+ x2

1
−bx2



Essentially Nonlinear Phenomena

3 Limit cycles: Linear oscillators exhibit a continuum of
periodic orbits; e.g., every circle is a periodic orbit for
ẋ = Ax where

A =

[
0 −β

β 0

]
(λ1,2 =∓jβ ).

In contrast, a limit cycle is an isolated periodic orbit and
can occur only in nonlinear systems.

limit cycle
harmonic
oscillator
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Essentially Nonlinear Phenomena: Example of Limit Cycle

Example: van der Pol oscillator

Cv̇C = −iL + vC − v3
C

Li̇L = vC
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x1

x2

ẋ1 = 0
ẋ2 = 0

stable
(gene on)

stable
(gene off)

unstable
(saddle point)

3. Limit cycles: Linear oscillators exhibit a continuum of periodic
orbits; e.g., every circle is a periodic orbit for ẋ = Ax where

A =

"
0 �b

b 0

#
(l1,2 = ⌥jb).

In contrast, a limit cycle is an isolated periodic orbit and can occur
only in nonlinear systems.

limit cycleharmonic
oscillator

Example: van der Pol oscillator

Cv̇C = �iL + vC � v3
C

Li̇L = vC

iL

LC
+

�
vC

iR

vC

iR = �vC + v3
C

"negative resistance"
^^

iL

vC



Essentially Nonlinear Phenomena

4 Chaos: Irregular oscillations, never exactly repeating.
Example: Lorenz system (derived by Ed Lorenz in 1963 as
a simplified model of convection rolls in the atmosphere):

ẋ = σ(y− x)

ẏ = rx− y− xz

ż = xy−bz.

Chaotic behavior with σ = 10, b = 8/3, r = 28:
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4. Chaos: Irregular oscillations, never exactly repeating.

Example: Lorenz system (derived by Ed Lorenz in 1963 as a sim-
plified model of convection rolls in the atmosphere):

ẋ = s(y � x)

ẏ = rx � y � xz

ż = xy � bz.

Chaotic behavior with s = 10, b = 8/3, r = 28:
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• For continuous-time, time-invariant systems, n � 3 state vari-
ables required for chaos.

n = 1: x(t) monotone in t, no oscillations:

x

f (x)

n = 2: Poincaré-Bendixson Theorem (to be studied in Lecture 4)
guarantees regular behavior.

• Poincaré-Bendixson does not apply to time-varying systems and
n � 2 is enough for chaos (for Van der Pol oscillator can exhibit
chaos).

• For discrete-time systems, n = 1 is enough (we will see an
example in Lecture 6).
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Essentially Nonlinear Phenomena: Chaos (cont.)

▶ For continuous-time, time-invariant systems, n ≥ 3 state
variables required for chaos.
n = 1: x(t) monotone in t, no oscillations:

x

f (x)

n = 2: Poincaré-Bendixson Theorem (to be studied in
Lecture 4) guarantees regular behavior.

▶ Poincaré-Bendixson does not apply to time-varying
systems and n ≥ 2 is enough for chaos (for Van der Pol
oscillator can exhibit chaos).

▶ For discrete-time systems, n = 1 is enough (we will see an
example in Lecture 6).
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Essentially Nonlinear Phenomena: Chaos (cont.)

▶ Poincaré-Bendixson does not apply to time-varying
systems and n ≥ 2 is enough for chaos (for Van der Pol
oscillator can exhibit chaos).

▶ For discrete-time systems, n = 1 is enough (we will see an
example in Lecture 6).
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Planar (Second Order) Dynamical Systems: Linear

Phase Portraits of Linear Systems: ẋ = Ax

▶ Distinct real eigenvalues

T−1AT =

[
λ1 0
0 λ2

]

In z = T−1x coordinates:

ż1 = λ1z1, ż2 = λ2z2.
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▶ Chapter 2 in both Sastry
and Khalil



Phase Portraits of Linear Systems, Real Eigenvalues (cont.)

The equilibrium is called a node when λ1 and λ2 have the same
sign (stable node when negative and unstable when positive). It
is called a saddle point when λ1 and λ2 have opposite signs.
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Planar (Second Order) Dynamical Systems
Chapter 2 in both Sastry and Khalil

Phase Portraits of Linear Systems: ẋ = Ax

• Distinct real eigenvalues

T�1 AT =

"
l1 0
0 l2

#

In z = T�1x coordinates:

ż1 = l1z1, ż2 = l2z2.

The equilibrium is called a node when l1 and l2 have the same
sign (stable node when negative and unstable when positive). It is
called a saddle point when l1 and l2 have opposite signs.

z1z1z1

z2z2z2

l1 < l2 < 0 l1 > l2 > 0 l2 < 0 < l1

stable
node

unstable
node saddle

• Complex eigenvalues: l1,2 = a ⌥ jb

T�1 AT =

"
a �b

b a

#

ż1 = az1 � bz2

ż2 = az2 + bz1
! polar coordinates !

ṙ = ar

q̇ = b

z1z1z1

z2z2z2

stable
focus

unstable
focus center

a < 0 a > 0 a = 0

The phase portraits above assume b > 0 so that the direction of
rotation is counter-clockwise: q̇ = b > 0.
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Phase Portraits of Linear Systems, Complex Eigenvalues

▶ Complex eigenvalues: λ1,2 = α ∓ jβ

T−1AT =

[
α −β

β α

]

ż1 = αz1 −β z2

ż2 = αz2 +β z1
→ polar coordinates →

ṙ = αr

θ̇ = β
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Phase Portraits of Linear Systems, Complex Eigenvalues (cont.)

Complex eigenvalues:
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Planar (Second Order) Dynamical Systems
Chapter 2 in both Sastry and Khalil

Phase Portraits of Linear Systems: ẋ = Ax

• Distinct real eigenvalues

T�1 AT =

"
l1 0
0 l2

#

In z = T�1x coordinates:

ż1 = l1z1, ż2 = l2z2.

The equilibrium is called a node when l1 and l2 have the same
sign (stable node when negative and unstable when positive). It is
called a saddle point when l1 and l2 have opposite signs.

z1z1z1

z2z2z2

l1 < l2 < 0 l1 > l2 > 0 l2 < 0 < l1

stable
node

unstable
node saddle

• Complex eigenvalues: l1,2 = a ⌥ jb

T�1 AT =

"
a �b

b a

#

ż1 = az1 � bz2

ż2 = az2 + bz1
! polar coordinates !

ṙ = ar

q̇ = b

z1z1z1

z2z2z2

stable
focus

unstable
focus center

a < 0 a > 0 a = 0

The phase portraits above assume b > 0 so that the direction of
rotation is counter-clockwise: q̇ = b > 0.
The phase portraits above assume β > 0 so that the direction

of rotation is counter-clockwise: θ̇ = β > 0.
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