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Feedback Linearization Continued

Recall “strict feedback systems" discussed in Lecture 14:
ẋ1 = f1(x1)+g1(x1)x2

ẋ2 = f2(x1,x2)+g2(x1,x2)x3

ẋ3 = f3(x1,x2,x3)+g3(x1,x2,x3)x4

...

ẋn = fn(x)+gn(x)u.
Such systems are feedback linearizable when gi(x1, . . . ,xi) ̸= 0
near the origin, i = 1,2, · · · ,n, because the relative degree is n
with the choice of output y = h(x) = x1:

y(n) = Ln
f h(x)+g1(x1)g2(x1,x2) · · ·gn(x)︸ ︷︷ ︸

LgLn−1
f h(x) ̸= 0

u.
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Example

Feedback linearizability is lost when gi(0) = 0 for some i; how-
ever, backstepping may be applicable:
Example 1 (from Lecture 14):

ẋ1 = x2
1x2

ẋ2 = u.

Treat x2 as virtual control and let α1(x1) =−x1 which stabilizes

the x1-subsystem, as seen with Lyapunov function V1(x1) =
1
2

x2
1.

Then z2 := x2 −α1(x1) satisfies ż2 = u− α̇1, and

u = α̇1 −
∂V1

∂x1
x2

1 − k2z2 =−x2
1x2 − x3

1 − k2(x2 + x1)

achieves global asymptotic stability:

V =
1
2

x2
1 +

1
2

z2
2 ⇒ V̇ =−x1

4 − k2z2
2.
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▶ Backstepping: for
system

η̇ = F(η)+G(η)x

ẋ = u,

use as input

u = α̇ − ∂V
∂η

G(η)− kz, k > 0

with modified Lyapunov
function
V+(η ,z) = V(η)+

1
2

z2.



Example (cont.)

In contrast the system is not feedback linearizable, because con-
dition (C1) in the theorem for feedback linearizability (Lecture
18, p.4) fails. To see this note that

Lecture 19 Notes – ME6402, Spring 2025 4/16

ẋ1 = x2
1x2

ẋ2 = u.

Theorem: ẋ = f (x)+g(x)u is feedback lineariz-
able around x0 if and only if the following two
conditions hold:
C1) [g(x0) adf g(x0) . . . adn−1

f g(x0)] has rank
n
C2) ∆(x) = span{g(x),adf g(x), . . . ,adn−2

f g(x)}
is involutive in a neighborhood of x0.



Example (cont.)

In contrast the system is not feedback linearizable, because con-
dition (C1) in the theorem for feedback linearizability (Lecture
18, p.4) fails. To see this note that

f (x) =

[
x2

1x2

0

]
, g(x) =

[
0
1

]
, adf g(x) = [f ,g](x) =

[
−x2

1

0

]
,

thus, with n = 2 and x0 = 0,

[g(x0) adf g(x0) . . . adn−1
f g(x0)] =

[
0 0
1 0

]
,

which is rank deficient.
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f g(x0)] has rank
n
C2) ∆(x) = span{g(x),adf g(x), . . . ,adn−2
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Multi-Input Multi-Output Systems

Consider now a MIMO system with m inputs and m outputs:

ẋ = f (x)+
m

∑
i=1

gi(x)ui

yi = hi(x), i = 1, · · · ,m.

Let ri denote the number of times we need to differentiate yi to
hit at least one input. Then,


y(r1)
1
...

y(rm)
m


=




Lr1
f h1(x)

...
Lrm

f hm(x)




︸ ︷︷ ︸
=: B(x)

+




Lg1Lr1−1
f h1(x) · · · LgmLr1−1

f h1(x)
...

...
Lg1Lrm−1

f hm(x) · · · LgmLrm−1
f hm(x)




︸ ︷︷ ︸
=: A(x)




u1
...

um


 .
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Multi-Input Multi-Output Systems (cont.)

If A(x) is nonsingular, then the feedback law

u = A(x)−1(−B(x)+ v)

input/output linearizes the system, creating m decoupled chains
of integrators:

y(ri)
i = vi, i = 1, . . . ,m.

We say that the system has vector relative degree {r1, · · · ,rm} if
the matrix A(x) defined above is nonsingular.
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


y(r1)
1
...

y(rm)
m


=




Lr1
f h1(x)

...
Lrm

f hm(x)




︸ ︷︷ ︸
=: B(x)

+




Lg1 Lr1−1
f h1(x) · · · Lgm Lr1−1

f h1(x)
...

...
Lg1 Lrm−1

f hm(x) · · · Lgm Lrm−1
f hm(x)




︸ ︷︷ ︸
=: A(x)




u1
...

um


 .



MIMO Example

Example 2: The kinematic model of a unicycle, depicted on the
right, is 


ẋ1

ẋ2

ẋ3


=




cosx3

sinx3

0


u1 +




0
0
1


u2,

where u1 is the speed and u2 is the angular velocity.
Let y1 = x1 and y2 = x2, and note that[

ẏ1

ẏ2

]
=

[
cosx3 0
sinx3 0

]

︸ ︷︷ ︸
=: A(x)

[
u1

u2

]
.

Since A(x) is singular, the system does not have a well-defined
vector relative degree. 2
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thus, with n = 2 and x0 = 0,

[g(x0) ad f g(x0) . . . adn�1
f g(x0)] =

"
0 0
1 0

#
,

which is rank deficient.

Multi-Input Multi-Output Systems

Consider now a MIMO system with m inputs and m outputs:

ẋ = f (x) +
m

Â
i=1

gi(x)ui (2)

yi = hi(x), i = 1, · · · , m.

Let ri denote the number of times we need to differentiate yi to hit at
least one input. Then,
2
664

y(r1)
1
...

y(rm)
m

3
775=

2
664

Lr1
f h1(x)

...
Lrm

f hm(x)

3
775

| {z }
=: B(x)

+

2
664

Lg1 Lr1�1
f h1(x) · · · Lgm Lr1�1

f h1(x)
...

...
Lg1 Lrm�1

f hm(x) · · · Lgm Lrm�1
f hm(x)

3
775

| {z }
=: A(x)

2
664

u1
...

um

3
775 .

If A(x) is nonsingular, then the feedback law

u = A(x)�1(�B(x) + v)

input/output linearizes the system, creating m decoupled chains of
integrators:

y(ri)
i = vi, i = 1, . . . , m.

We say that the system has vector relative degree {r1, · · · , rm} if the
matrix A(x) defined above is nonsingular.

Example 2: The kinematic model of a unicycle, depicted below, is
2
64

ẋ1

ẋ2

ẋ3

3
75 =

2
64

cos x3

sin x3

0

3
75 u1 +

2
64

0
0
1

3
75 u2,

where u1 is the speed and u2 is the angular velocity.

(x1, x2)

q = x3

u1



Multi-Input Multi-Output Systems
▶ The notion of zero dynamics and the normal form can be extended to

MIMO systems. If the system has vector relative degree {r1, · · · ,rm},
then r := r1 + · · ·+ rm ≤ n and

ζ := [h1(x) Lf h1(x) · · ·Lr1−1
f h1(x) · · · hm(x) Lf hm(x) · · ·Lrm−1

f hm(x)]T

defines a partial set of coordinates.

▶ As in normal form discussed in Lecture 17, one can find n− r additional
functions z1(x), · · · ,zn−r(x) so that x 7→ (z,ζ ) is a complete coordinate
transformation.

▶ Full-state feedback linearization amounts to finding m output functions
h1, · · · ,hm such that the system has vector relative degree {r1, · · · ,rm}
with r1 + · · ·+ rm = n. Necessary and sufficient conditions for the
existence of such functions, analogous to those in Lecture 18 for SISO
systems, are available.
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▶ See, see, e.g., Sastry,
Section 9.3 for MIMO
zero dynamics

▶ See, e.g., Sastry,
Proposition 9.16 for
full-state feedback
linearization conditions



Example

Example 3: Consider the following model of a planar vertical
take-off and landing (PVTOL) aircraft

ẍ = −sin(θ)u1 +µ cos(θ)u2

z̈ = cos(θ)u1 +µ sin(θ)u2 −1

θ̈ = u2,

where µ is a constant that accounts for the coupling between
the rolling moment and translational acceleration, and −1 in the
second equation is the gravitational acceleration, normalized to
unity by appropriately scaling the variables.
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Let y1 = x1 and y2 = x2, and note that
"

ẏ1

ẏ2

#
=

"
cos x3 0
sin x3 0

#

| {z }
=: A(x)

"
u1

u2

#
.

Since A(x) is singular, the system does not have a well-defined vector
relative degree. ⇤
The notion of zero dynamics and the normal form can be extended to
MIMO systems2. If the system has vector relative degree {r1, · · · , rm}, 2 see, e.g., Sastry, Section 9.3

then r := r1 + · · · + rm  n and

z := [h1(x) L f h1(x) · · · Lr1�1
f h1(x) · · · hm(x) L f hm(x) · · · Lrm�1

f hm(x)]T

defines a partial set of coordinates. As in normal form discussed in
Lecture 17, one can find n � r additional functions z1(x), · · · , zn�r(x)

so that x 7! (z, z) is a complete coordinate transformation.

Full-state feedback linearization amounts to finding m output func-
tions h1, · · · , hm such that the system has vector relative degree
{r1, · · · , rm} with r1 + · · · + rm = n. Necessary and sufficient con-
ditions for the existence of such functions, analogous to those in
Lecture 18 for SISO systems, are available3. 3 see, e.g., Sastry, Proposition 9.16

Example 3: Consider the following model of a planar vertical take-off
and landing (PVTOL) aircraft4 4 Sastry, Section 10.4.2

ẍ = � sin(q)u1 + µ cos(q)u2

z̈ = cos(q)u1 + µ sin(q)u2 � 1

q̈ = u2,

where µ is a constant that accounts for the coupling between the
rolling moment and translational acceleration, and �1 in the second
equation is the gravitational acceleration, normalized to unity by
appropriately scaling the variables.

x

q

u1

z

▶ Sastry, Section 10.4.2



Example (cont.)

If we take x and z as the two outputs we get
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and landing (PVTOL) aircraft4 4 Sastry, Section 10.4.2

ẍ = � sin(q)u1 + µ cos(q)u2

z̈ = cos(q)u1 + µ sin(q)u2 � 1
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x

q

u1

z

ẍ = −sin(θ)u1 +µ cos(θ)u2
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Example (cont.)

If we take x and z as the two outputs we get[
ẍ
z̈

]
=

[
0
−1

]
+

[
−sinθ µ cosθ

cosθ µ sinθ

]

︸ ︷︷ ︸
A(θ)

[
u1

u2

]

where A(θ) is invertible when µ ̸= 0:

A−1(θ) =



−sinθ cosθ

1
µ

cosθ
1
µ

sinθ


 .

Thus the systems has vector relative degree {2,2} when µ ̸= 0,
and the input/output linearizing controller is

[
u1

u2

]
=



−sinθ cosθ

1
µ

cosθ
1
µ

sinθ



([

0
1

]
+

[
v1

v2

])
.
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Example (cont.)

The zero dynamics is obtained by substituting u∗2 =
1
µ

sinθ ,

needed to maintain z at a constant value and ż at zero, in the
dynamical equation for θ :

θ̈ =
1
µ

sinθ .

The system is nonminimum phase for µ > 0, since θ = 0 is un-
stable.
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Drift-Free Systems

Suppose f (x) = 0 for all x in (2). Such system are called drift-
free and encompass linear systems of the form

ẋ = Bu, x ∈ Rn, u ∈ Rm.

Assuming the columns of the n×m matrix B are linearly inde-
pendent, we can find n−m row vectors Ti, i = 1, · · · ,n−m, such
that

TiB = 0.
This means that φi(x) := Tix satisfies

d
dt

φi(x(t)) = 0 ⇒ φi(x(t)) = φi(x(0))

regardless of the control inputs. Since there are n−m such con-
straints, controllability is not possible in drift-free linear systems
with fewer control inputs than the state dimension (m < n).
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ẋ = f (x)+
m

∑
i=1

gi(x)ui (2)

yi = hi(x), i = 1, · · · ,m.



Drift-Free Systems (cont.)

The Frobenius Theorem (Lecture 18) implies that constraints

satisfying
d
dt

φi(x(t)) = 0, called holonomic constraints, also exist
for nonlinear drift-free systems

ẋ =
m

∑
i=1

gi(x)ui

when the distribution ∆ = span{g1, · · · ,gm} is nonsingular and
involutive.
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d
dt

φi(x(t)) = 0

⇒ φi(x(t)) = φi(x(0))



Drift-Free Systems (cont.)

When ∆ = span{g1, · · · ,gm} is non-involutive, however, control-
lability may be possible with m < n; this is another essentially
nonlinear phenomenon.
Indeed, Chow’s Theorem states that (3) is controllable if the
involutive closure of ∆ = span{g1, · · · ,gm} has dimension n. This
condition means that the Lie brackets of g1, · · · ,gm span new
dimensions that are not already spanned by these basis vector
fields.

▶ Drift-free systems satisfying Chow’s Theorem are called
nonholonomic.
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▶ Drift-free nonlinear
system:

ẋ =
m

∑
i=1

gi(x)ui (3)

▶ Involutive closure is the
smallest involutive
distribution that
containts ∆



Example

Example 4: Recall the unicycle model discussed in Example 2,
where

g1(x) =




cosx3

sinx3

0


 , g2 =




0
0
1


 , and [g1,g2](x) =



−sinx3

cosx3

0


 .

∆ = span{g1,g2} is non-involutive, as [g1,g2] generates a new
direction. Taken together, g1, g2, and [g1,g2] span the entire
three-dimensional space at each point x; therefore, the system is
controllable by Chow’s Theorem. This conclusion sheds light on
how parallel parking is possible despite lack of sideways actuation.
2
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Interpreting Lie Brackets in Driftless Systems

To present an interpretation of the Lie bracket [g1,g2], we let
Φ

gi
t (x0) denote the solution of the system ẋ = gi(x) at time t

from initial condition x0. Then it can be shown that

Φ
−g2
t (Φ−g1

t (Φg2
t (Φg1

t (x0)))) = t2[g1,g2](x0)+O(t3),

which suggests that motion in the direction of the Lie bracket
[g1,g2] can be generated by alternating actuation of the two
inputs u1 and u2 with positive and negative signs, as one does in
parallel parking.
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