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Feedback Linearization Continued

Recall “strict feedback systems" discussed in Lecture 14:
X1 =fi(x1) +g1(x1)x2
X2 = fa(x1,x2) + g2(x1,x2)X3

X3 = f3(x1,%2,x3) + g3(x1,%2,x3)x4

Jn = fu(x) + gn(x)u.
Such systems are feedback linearizable when g;(x,...,x;) #0
near the origin, i =1,2,--- ,n, because the relative degree is n
with the choice of output y = h(x) = x;:

Y = Lih(x) + g1 (x1)g2(x1, %) - “gn(¥) 1t

-~

LeLi™"h(x) #0
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Feedback linearizability is lost when g;(0) =0 for some i; how-
ever, backstepping may be applicable:
Example 1 (from Lecture 14):

X = x%xz
Xy = U.
Treat x; as virtual control and let o (x;) = —x; which stabilizes
the x;-subsystem, as seen with Lyapunov function V;(x;) = %x%
Then 2 := x; — oy (x;) satisfies 2, =u— ¢y, and
u= Q0 — g)‘:x% —kozp = —x%xg —x? —ka(xp +x1)

achieves global asymptotic stability:
1 1 ,
V= 5x%+§z§ = V=-x*—kid
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» Backstepping: for

system

n=Fn)+G(n)x

X =u,
use as input
d
u:d—%G(n)—kz, k>0

with modified Lyapunov

function

1
Vi(n,z) =V(n)+ 522-
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Example (cont.)

In contrast the system is not feedback linearizable, because con-
dition (C1) in the theorem for feedback linearizability (Lecture oA
18, p.4) fails. To see this note that =W

x%xz

Theorem: i = f(x) + g(x)u is feedback lineariz-
able around xq if and only if the following two
conditions hold:

C1) [g(xo) adrg(xo) ... ad;_lg(xo)] has rank
n

€2) A(x) = span{g(x),adg(x)....,ad} g(x)}
is involutive in a neighborhood of xg.
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Example (cont.)

In contrast the system is not feedback linearizable, because con-
dition (C1) in the theorem for feedback linearizability (Lecture
18, p.4) fails. To see this note that

x%xz 0 —x%
[l = [ 0 ] g(x) = H ady g(x) = [f,g](x) = [ 0 ]

thus, with n =2 and xo =0,

0 0

[g(x0) adrg(xo) ... adf~'g(xo)] = L ol

which is rank deficient.
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X 1 = x%xz

XQ = U.

Theorem: i = f(x) + g(x)u is feedback lineariz-
able around xq if and only if the following two
conditions hold:

C1) [g(xo) adrg(xo) ... ad;_lg(xo)] has rank
n

€2) A(x) = span{g(x),adg(x)....,ad} g(x)}
is involutive in a neighborhood of xg.
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Multi-Input Multi-Output Systems

Consider now a MIMO system with m inputs and m outputs:
m
o= f)+ ) gilx)u
i=1

yi = hi(x), i=1,---,m.
Let r; denote the number of times we need to differentiate y; to
hit at least one input. Then,

W @] [l @ L L) | [

L= : + : Z ;

W | L ()| Lol () Lo L ()| L
::E(x) =1 A(x)
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Multi-Input Multi-Output Systems (cont.)

If A(x) is nonsingular, then the feedback law N T
1 L
u=A(x)""(=B(x)+v) | H : l

b ] L)
E A

input/output linearizes the system, creating m decoupled chains =
of integrators: (Lall @ - Lol ™M) [
() _ i1 : ]

v,V =v, i=1,....m.

Um.

(Lot L n(x) -+ Lo L hn(x)

We say that the system has vector relative degree {ry,--- ,ry} if =T

the matrix A(x) defined above is nonsingular.
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MIMO Example

Example 2: The kinematic model of a unicycle, depicted on the

right, is w
X1 COS X3 0 L
Xy | = |sinx3 | ur+ [0 uy,
X3 0 1

where u; is the speed and u, is the angular velocity.
Let y; =x; and y, = x;, and note that

yi| _ |cosxs Of |uy
A N sinxs 0| |ua|
| —
=:A(x)
Since A(x) is singular, the system does not have a well-defined
vector relative degree. O
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Multi-Input Multi-Output Systems

» The notion of zero dynamics and the normal form can be extended to
> See, see, e.g., Sastry,
MIMO systems. If the system has vector relative degree {ry, -+ ,rm}, Section 9.3 for MIMO
then r:=ri+---+r, <n and zero dynamics
-1 m—1
= [ (x) Lehy(x)--- L7 i (x) -+ (%) Lph(x) - L7 By ()] > See eg., Sastry,
defines a partial set of coordinates. Proposition 9.16 for
» As in normal form discussed in Lecture 17, one can find n — r additional full-state feedback
functions z;(x),- -+ ,zy—r(x) so that x — (z,{) is a complete coordinate linearization conditions

transformation.

» Full-state feedback linearization amounts to finding m output functions
hi,-- ,hy such that the system has vector relative degree {ry, -+ ,r,}
with r{ +---+r,, =n. Necessary and sufficient conditions for the
existence of such functions, analogous to those in Lecture 18 for SISO
systems, are available.
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Example 3: Consider the following model of a planar vertical

take-off and landing (PVTOL) aircraft z 5
¥ = —sin(0)u;+ pcos(0)uy 0
Z = cos(0)u;+pusin(Q)u; — 1
6 = wuw,
where 1 is a constant that accounts for the coupling between > X

the rolling moment and translational acceleration, and —1 in the
second equation is the gravitational acceleration, normalized to SESIR Soeiiun i

unity by appropriately scaling the variables.
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Example (cont.)

If we take x and z as the two outputs we get
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N

uy

—sin(0)u; + pcos(0)uy
cos(0)u; + psin(0)uy — 1

uz,
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Example (cont.)

If we take x and z as the two outputs we get

Xl 10 . —sin@® ucosO| |u;
=1 cos@ usin@ | |up
A(6)
where A(6) is invertible when p # 0:

—sin@  cos@

AN e)= |1
(6) —cos@ —sinf
u u

Thus the systems has vector relative degree {2,2} when u #0,

and the input/output linearizing controller is
w| l—sinG 1cosG 0
| | —cos® —sinb
u u
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+ |

) |

V2

N

uy

—sin(0)u; + pcos(0)uy
cos(0)u; + psin(0)uy — 1

uz,
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Example (cont.)

. . N 1 .
The zero dynamics is obtained by substituting u; = —sin8, 1w
needed to maintain z at a constant value and z at zero, in the A
dynamical equation for 6: 0
.1
6 = —sin6.
u
The system is nonminimum phase for y > 0, since 6 =0 is un- sy
stable.
¥ = —sin(0)u; + pcos(0)uy
7 = cos(0)u;+usin(0)uy — 1

b = w,
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Drift-Free Systems

Suppose f(x) = 0 for all x in (2). Such system are called drift- .
free and encompass linear systems of the form F=fx)+ ) &@u  (2)
X=Bu, xeR" ueR". -
Assuming the columns of the n x m matrix B are linearly inde-
pendent, we can find n —m row vectors T;, i =1,--- ,n—m, such
that
T;B=0.
This means that ¢;(x) := T;x satisfies

Lo =0 = 9lx(1) = 4(x0)
regardless of the control inputs. Since there are n —m such con-
straints, controllability is not possible in drift-free linear systems
with fewer control inputs than the state dimension (m < n).
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Drift-Free Systems (cont.)

The Frobenius Theorem (Lecture 18) implies that constraints

d 00 =0
satisfying —@;(x(¢)) = 0, called holonomic constraints, also exist ar’
for nonlinear drift-free systems = i(x(1)) = 9i(x(0))
m
X = Zgi(x)ui
i=1
when the distribution A = span{g;,---,gn} is nonsingular and
involutive.
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Drift-Free Systems (cont.)

When A = span{gy,---,gn} is non-involutive, however, control- > Drift-free nonlinear
lability may be possible with m < n; this is another essentially system:

nonlinear phenomenon. F= f:gi(X)ui (3)
Indeed, Chow's Theorem states that (3) is controllable if the =1

involutive closure of A= span{gj,---,gm} has dimension n. This > Involutive closure is the
condition means that the Lie brackets of g1, --,g, span new smallest involutive
dimensions that are not already spanned by these basis vector distribution that

fields containts A

» Drift-free systems satisfying Chow's Theorem are called
nonholonomic.

Lecture 19 Notes — ME6402, Spring 2025 14/16



Example 4: Recall the unicycle model discussed in Example 2,

where
COSX3 0 —sinx;
g1(x)=[sinxz |, g =10, and [g1,82](x)=| cosx3
0 1 0

A = span{gy,g2} is non-involutive, as [g1,g2] generates a new
direction. Taken together, gi, g2, and [g1,g2] span the entire
three-dimensional space at each point x; therefore, the system is
controllable by Chow's Theorem. This conclusion sheds light on
how parallel parking is possible despite lack of sideways actuation.
O
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Interpreting Lie Brackets in Driftless Systems

To present an interpretation of the Lie bracket [g1,g2], we let
®%(xo) denote the solution of the system & = g;(x) at time ¢
from initial condition x¢. Then it can be shown that
P, (P, (D (D' (x0)))) = [g1,82] (x0) + O(F),

which suggests that motion in the direction of the Lie bracket
[¢1,82] can be generated by alternating actuation of the two
inputs u; and u, with positive and negative signs, as one does in
parallel parking.
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