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▶ Define a few basic
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differential geometry

▶ Frobenius Theorem
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Full-State Feedback Linearization

The system ẋ = f (x)+g(x)u, x ∈ Rn, u ∈ R, is (full state) feed-
back linearizable if a function h : Rn 7→ R exists such that the
relative degree from u to y = h(x) is n.
Since r = n, the normal form in Lecture 17 has no zero dynamics
and

x →


ζ1

ζ2
...

ζn

=


h(x)

Lf h(x)
...

Ln−1
f h(x)


is a diffeomorphism that transforms the system to the form on
next slide
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Full-State Feedback Linearization (cont)
ζ̇1 = ζ2

ζ̇2 = ζ3
...

ζ̇n = Ln
f h(x)+LgLn−1

f h(x)u.

Then, the feedback linearizing controller

u =
1

LgLn−1
f h(x)

(
−Ln

f h(x)+ v

)
, v =−k1ζ1 · · ·− knζn,

yields the closed-loop system:

ζ̇ = Aζ where A =


0 1 0 . . .

0 0 1 . . .

. . .
1

−k1 −k2 −k3 . . . −kn

 .
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▶ The system
ẋ = f (x)+g(x)u, x ∈ Rn,
u ∈ R, is (full state)
feedback linearizable if a
function h : Rn 7→ R
exists such that the
relative degree from u to
y = h(x) is n.

x →


ζ1

ζ2
...

ζn

=


h(x)

Lf h(x)
...

Ln−1
f h(x)





Example

Example:
ẋ1 = x2 +2x2

1

ẋ2 = x3 +u

ẋ3 = x1 − x3

The choice y = x3 gives relative degree r = n = 3.
Let ζ1 = x3, ζ2 = ẋ3 = x1−x3, ζ3 = ẍ3 = ẋ1− ẋ3 = x2+2x2

1−x1+

x3.

ζ̇1 = ζ2

ζ̇2 = ζ3

ζ̇3 = (4x1 −1)(x2 +2x2
1)+ x1 +u.

Feedback linearizing controller:

u =−(4x1 −1)(x2 +2x2
1)− x1 − k1ζ1 − k2ζ2 − k3ζ3.
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Summary

Summary so far:
I/O Linearization: • suitable for tracking

• output y is an intrinsic physical variable
Full state linearization: • set point stabilization

• output is not intrinsic, selected to
enable a linearizing change of variables.

Remaining question:

▶ When is a system feedback linearizable, i.e., how do we
know whether a relative degree r = n output exists?
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Basic Definitions from Differential Geometry

Definition: The Lie bracket of two vector fields f and g is a new
vector field defined as:

[f ,g](x) =
∂g
∂x

f (x)− ∂ f
∂x

g(x).

Note:

1 [f ,g] =−[g, f ],

2 [f , f ] = 0,

3 If f ,g are constant then [f ,g] = 0.

Notation for repeated applications:

[f , [f ,g]] = ad2
f g, [f , [f , [f ,g]]] = ad3

f g, · · ·
ad0

f g(x)≜ g(x), adk
f g ≜ [f ,adk−1

f g] k = 1,2,3, . . .
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Distributions

Definition: Given vector fields f1, . . . , fk, a distribution ∆ is defined
as ∆(x) = span{f1(x), . . . , fk(x)}.
f ∈ ∆ means that there exist scalar functions αi(x) such that

f (x) = α1(x)f1(x)+ · · ·+αk(x)fk(x).

Definition: ∆ is said to be nonsingular if f1(x), . . . , fk(x) are lin-
early independent for all x.
Definition: ∆ is said to be involutive if

g1 ∈ ∆,g2 ∈ ∆ =⇒ [g1,g2] ∈ ∆

that is, ∆ is closed under the Lie bracket operation.
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Involutive Distributions

Proposition: ∆ = span{f1, . . . , fk} is involutive if and only if

[fi, fj] ∈ ∆ 1 ≤ i, j ≤ k.

Example 1: ∆= span{f1, . . . , fk} where f1, . . . , fk are constant vec-
tors

Example 2: a single vector field f (x) is involutive since [f , f ] =
0 ∈ ∆
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Completely Integrable

Definition: A nonsingular k-dimensional distribution

∆(x) = span{f1(x), . . . , fk(x)} x ∈ Rn

is said to be completely integrable if there exist n− k functions

φ1(x), . . . ,φn−k(x)

such that
∂φi

∂x
fj(x) = 0 i = 1, . . . ,n− k, j = 1, . . . ,k

and dφi(x) :=
∂φi

∂x
, i = 1, . . . ,n− k, are linearly independent.
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Example

Example 3: If f1, . . . , fk are linearly independent constant vectors,
then we can find n− k independent row vectors T1, . . . ,Tn−k s.t.

Ti[f1 . . . fk] = 0.

Therefore, ∆ = span{f1, . . . , fk} is completely integrable and

φi(x) = Tix, i = 1, . . . ,n− k.
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Frobenius Theorem

Frobenius Theorem: A nonsingular distribution is completely in-
tegrable if and only if it is involutive.

Example 3 above is a special case since ∆ is involutive by Example
1.
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Example 3: If f1, . . . , fk are
linearly independent constant
vectors, then we can find
n− k independent row vectors
T1, . . . ,Tn−k s.t.

Ti[f1 . . . fk] = 0.

Therefore, ∆ = span{f1, . . . , fk}
is completely integrable and

φi(x) = Tix, i = 1, . . . ,n− k.



Back to (Full State) Feedback Linearization

Recall: ẋ = f (x)+g(x)u, x ∈Rn, u ∈R is feedback linearizable if
we can find an output y = h(x) such that relative degree r = n.

How do we determine if a relative degree r = n output exists?

Lgh(x) = LgLf h(x) = · · ·= LgLn−2
f h(x) = 0 in a nbhd of x0

LgLn−1
f h(x0) ̸= 0.
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Back to (Full State) Feedback Linearization

Proposition: (2)-(3) are equivalent to:

Lgh(x) = Ladf gh(x) = · · ·= Ladn−2
f gh(x) = 0 in a nbhd of x0(1)

Ladn−1
f gh(x0) ̸= 0.

The advantage of (1) over (2) is that it has the form:
∂h
∂x

[g(x) adf g(x) . . . adn−2
f g(x)] = 0

which is amenable to the Frobenius Theorem.
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Lgh(x) = LgLf h(x) =

· · ·= LgLn−2
f h(x) = 0

in a nbhd of x0 (2)

LgLn−1
f h(x0) ̸= 0. (3)

▶ Proposition follows from
equation on future slide
with j = 0



Necessary and Sufficient Conditions for Feedback Linearization

Theorem: ẋ = f (x)+ g(x)u is feedback linearizable around x0 if
and only if the following two conditions hold:
C1) [g(x0) adf g(x0) . . . adn−1

f g(x0)] has rank n
C2) ∆(x) = span{g(x),adf g(x), . . . ,adn−2

f g(x)} is involutive in a
neighborhood of x0.
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Necessary and Sufficient Conditions for Feedback Linearization (proof)

Proof: (if) Given C1 and C2 show that there exists h(x) satisfying
(4)-(5).
∆(x) is nonsingular by C1 and involutive by C2. Thus, by the
Frobenius Theorem, there exists h(x) satisfying (4) and dh(x) ̸=
0.
To prove (5) suppose, to the contrary, Ladn−1

f gh(x0) = 0. This
implies

dh(x0)[g(x0) adf g(x0) . . . adn−1
f g(x0)]︸ ︷︷ ︸

nonsingular by (C1)

= 0.

Thus dh(x0) = 0, a contradiction.
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Theorem: ẋ = f (x)+g(x)u is feedback lineariz-
able around x0 if and only if the following two
conditions hold:
C1) [g(x0) adf g(x0) . . . adn−1

f g(x0)] has rank
n
C2) ∆(x) = span{g(x),adf g(x), . . . ,adn−2

f g(x)}
is involutive in a neighborhood of x0.

▶ Alternative equations for feedback
linearization from proposition:

Lgh(x) = Ladf gh(x) = · · ·= Ladn−2
f gh(x) = 0

in a nbhd of x0 (4)

Ladn−1
f gh(x0) ̸= 0. (5)



Necessary and Sufficient Conditions for Feedback Linearization (proof)

(only if) Given that y = h(x) with r = n exists, that is (7)-(8) hold, show that
C1 and C2 are true.
We will use the following fact which holds when r = n:

Ladi
f gLj

f h(x) =

0 if i+ j ≤ n−2

(−1)n−1−jLgLn−1
f h(x) ̸= 0 if i+ j = n−1.

Define the matrix

M =


dh

dLf h
...

dLn−1
f h


[

g −adf g ad2
f g . . . (−1)n−1 adn−1

f g
]

(6)

and note that the (k, ℓ) entry is:

Mkℓ = dLk−1
f h(x)(−1)ℓ−1 adℓ−1

f g(x)

= (−1)ℓ−1Ladℓ−1
f gLk−1

f h(x).
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Theorem: ẋ = f (x)+g(x)u is feedback lineariz-
able around x0 if and only if the following two
conditions hold:
C1) [g(x0) adf g(x0) . . . adn−1

f g(x0)] has rank
n
C2) ∆(x) = span{g(x),adf g(x), . . . ,adn−2

f g(x)}
is involutive in a neighborhood of x0.

Lgh(x) = Ladf gh(x) = · · ·= Ladn−2
f gh(x) = 0

in a nbhd of x0 (7)

Ladn−1
f gh(x0) ̸= 0. (8)

▶ For the fact, see, e.g.,
Khalil, Lemma C.8



Necessary and Sufficient Conditions for Feedback Linearization (proof)

(only if cont.)
Then, from (9):

Mkℓ =

0 ℓ+ k ≤ n

̸= 0 ℓ+ k = n+1.
Since the diagonal entries are nonzero, M has rank n and thus the factor[

g −adf g ad2
f g . . . (−1)n−1 adn−1

f g
]

in (6) must have rank n as well. Thus (C1) follows.
This also implies ∆(x) is nonsingular; thus, by the Frobenius Thm,

complete integrability ≡ involutivity.

∆(x) is completely integrable since h(x) satisfying (7) exists by assumption;
thus, we conclude involutivity (C2).
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Theorem: ẋ = f (x)+g(x)u is feedback lineariz-
able around x0 if and only if the following two
conditions hold:
C1) [g(x0) adf g(x0) . . . adn−1

f g(x0)] has rank
n
C2) ∆(x) = span{g(x),adf g(x), . . . ,adn−2

f g(x)}
is involutive in a neighborhood of x0.

Ladi
f gLj

f h(x) =


0 if i+ j ≤ n−2

(−1)n−1−jLgLn−1
f h(x) ̸= 0

if i+ j = n−1.
(9)

▶ Form of M:
0 0 · · · ⋆

0 ⧸
...

... ⋆
...

⋆ · · · · · · ⋆





Example

ẋ1 = x2 +2x2
1

ẋ2 = x3 +u

ẋ3 = x1 − x3

Feedback linearizability was shown earlier by inspection: y = x3

gives relative degree = 3. Verify with the theorem above:

f (x) =

 x2 +2x2
1

x3

x1 − x3



g(x) =

 0
1
0



[f ,g](x) =

 −1
0
0



[f , [f ,g]](x) =

 4x1

0
1


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Example

ẋ1 = x2 +2x2
1

ẋ2 = x3 +u

ẋ3 = x1 − x3

Feedback linearizability was shown earlier by inspection: y = x3

gives relative degree = 3. Verify with the theorem above:

f (x) =

 x2 +2x2
1

x3

x1 − x3

 g(x) =

 0
1
0


[f ,g](x) =

 −1
0
0

 [f , [f ,g]](x) =

 4x1

0
1


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Example (cont.)

Conditions of the theorem:
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Theorem: ẋ = f (x)+g(x)u is feedback lineariz-
able around x0 if and only if the following two
conditions hold:
C1) [g(x0) adf g(x0) . . . adn−1

f g(x0)] has rank
n
C2) ∆(x) = span{g(x),adf g(x), . . . ,adn−2

f g(x)}
is involutive in a neighborhood of x0.

▶ Example:

ẋ1 = x2 +2x2
1

ẋ2 = x3 +u

ẋ3 = x1 − x3

f (x) =

 x2 +2x2
1

x3

x1 − x3

 g(x) =

 0
1
0


[f ,g](x) =

 −1
0
0

 [f , [f ,g]](x) =

 4x1

0
1





Example (cont.)

Conditions of the theorem:

1

 0 −1 4x1

1 0 0
0 0 1

 full rank

2 ∆ = span


 0

1
0

 ,
 −1

0
0


 involutive

∂h
∂x

 0 −1
1 0
0 0

 satisfied by h(x) = x3.
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Theorem: ẋ = f (x)+g(x)u is feedback lineariz-
able around x0 if and only if the following two
conditions hold:
C1) [g(x0) adf g(x0) . . . adn−1

f g(x0)] has rank
n
C2) ∆(x) = span{g(x),adf g(x), . . . ,adn−2

f g(x)}
is involutive in a neighborhood of x0.

▶ Example:

ẋ1 = x2 +2x2
1

ẋ2 = x3 +u

ẋ3 = x1 − x3

f (x) =

 x2 +2x2
1

x3

x1 − x3

 g(x) =

 0
1
0


[f ,g](x) =

 −1
0
0

 [f , [f ,g]](x) =

 4x1

0
1




