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Full-State Feedback Linearization

The system & = f(x) +g(x)u, x e R", u € R, is (full state) feed-
back linearizable if a function /4 : R" — R exists such that the
relative degree from u to y = h(x) is n.

Since r = n, the normal form in Lecture 17 has no zero dynamics

and
& h(x)
& Lyh(x)
x—= | 7 | = _
G L;"h(x)
is a diffeomorphism that transforms the system to the form on
next slide
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Full-State Feedback Linearization (cont)

?1 = & » The system
O o= & x=f(x)+g(x)u, xeR",
u €R, is (full state)
) feedback linearizable if a
& = L¢h(x) —|—LgLJ’?71h(x)u. function h: R" > R
exists such that the

Then, the feedback linearizing controller ,
relative degree from u to

1 = h(x) is n.
U= ————. —L"h(x)—i—v) v=—ki& - —k.§ o/
n— ‘f ’ n'sn;
LoLy " h(x) < & h(x)
yields the closed-loop system: & L¢h(x)
x— = :
0 1 0 : :
) 0 0 1 e Cn L}}ilh(x)
{=Af where A= '
1
ki —ky —kz ... —ky
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Example:
X1 = x4+ ZX%
X = x3+4u
X3 = X1—Xx3

The choice y = x3 gives relative degree r =n = 3.
Let {i=x3, H=d3=x1—x3, G3=33 =& —d3 =2+ 2] —x +

x3.
o= &
L = &
&= (4x1—1)(x2+2x7) +x1 +u.

Feedback linearizing controller:
u = —(4X1 — 1)()62-}-2)6%) — X1 —k1C1 —k2€2 —k3€3.
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Summary so far:

I/O Linearization: e suitable for tracking

e output y is an intrinsic physical variable
Full state linearization: e set point stabilization

e output is not intrinsic, selected to

enable a linearizing change of variables.
Remaining question:

> When is a system feedback linearizable, i.e., how do we
know whether a relative degree r = n output exists?
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Basic Definitions from Differential Geometry

Definition: The Lie bracket of two vector fields f and g is a new
vector field defined as:

F.8)(0) = S50~ Fg).
Note:

0 [f,g]=—[g.f]

® [f.f1=0,

© If f,g are constant then [f,g] =0.

Notation for repeated applications:

1.1f,8l) =adg, [f.[f.[f )] = ad} g,
adogx égx, adkgé 7aldkflg k=1,2,3,...
! f !
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Distributions

Definition: Given vector fields f1,. .., fx, a distribution A is defined
as A(x) = span{fi (x),...,fx(x)}.
f € A means that there exist scalar functions o;(x) such that

F(x) = ap(x)fi(x) +- - - + o (x)fe (x).
Definition: A is said to be nonsingular if fi(x),...,fi(x) are lin-
early independent for all x.
Definition: A is said to be involutive if

1EALEA = [g1,8] €A

that is, A is closed under the Lie bracket operation.
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Involutive Distributions

Proposition: A = span{fi,...,fi} is involutive if and only if
fifilea 1<ij<k.

Example 1: A=span{f,...,fi} wherefi,...,f; are constant vec-
tors

Example 2: a single vector field f(x) is involutive since [f,f] =
0eA
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Completely Integrable

Definition: A nonsingular k-dimensional distribution

A(x) = span{fi (x),....fi(x)} xeR"
is said to be completely integrable if there exist n —k functions

¢1 (x)7 ES) (Pn*k(x)

such that

¢ P .
ax}j(x)—O i=1,....n—k, j=1,....k

P
and d¢;(x) := 8¢ , i=1,...,n—k, are linearly independent.
X
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Example 3: Iffi,...,fx are linearly independent constant vectors,
then we can find n— k independent row vectors T1,...,T,_ s.t.
Tilfi .. fil =0.

Therefore, A =span{fi,...,fx} is completely integrable and
0i(x)=Tx, i=1,....n—k.
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Frobenius Theorem

Example 3:  If fi,....fx are

Frobenius Theorem: A nonsingular distribution is completely in- : -
linearly independent constant

tegrable if and only if it is involutive. vectors, then we can find

n—k independent row vectors

. . . . . Ty,...,T,_ s.t.
Example 3 above is a special case since A is involutive by Example b dnk

1. Tilfi--.fx] = 0.

Therefore, A = span{fi,....fx}
is completely integrable and
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Back to (Full State) Feedback Linearization

Recall: x=f(x)+g(x)u, x € R", u € R is feedback linearizable if
we can find an output y = h(x) such that relative degree r = n.

How do we determine if a relative degree r = n output exists?
Lgh(x) = LeLph(x) = --- = L,L{"*h(x) = 0 in a nbhd of xo
LeLi " h(xo) #0.
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Back to (Full State) Feedback Linearization

Proposition: (2)-(3) are equivalent to:
Lgh(x) = LgLh(x) =

Lgh(x) = Lag, gh(x) = -+- = L gn2,h(x) = 0 in a nbhd of xo(1)
! - =LLy h(x) =0
Lad;*gh(x@ #0. in a nbhd of xq ()
The advantagaehof (1) over (2) is that it has the form: LoLi " h(xg) £0. 3)
a[g(x) adrg(x) ... ad}’_zg(x)] =0

which is amenable to the Frobenius Theorem. > Proposition follows from
equation on future slide

with j=0
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Necessary and Sufficient Conditions for Feedback Linearization

Theorem: x = f(x) + g(x)u is feedback linearizable around xq if
and only if the following two conditions hold:

Cl) [g(xo) adfg(xo) ... ad}lflg(xo)] has rank n

C2) A(x)= span{g(x),adfg(x),...,ad}’*zg(x)} is involutive in a
neighborhood of xg.
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Necessary and Sufficient Conditions for Feedback Linearization (proof)

Proof: (if) Given C1 and C2 show that there exists A(x) satisfying

(4)-(5).

A(x) is nonsingular by C1 and involutive by C2. Thus, by the
Frobenius Theorem, there exists h(x) satisfying (4) and dh(x) #
0.

To prove (5) suppose, to the contrary, Lad}.flgh(xo) =0. This
implies

dh(xo)[g(x0) adsg(xo) ... adi'g(xo)] =0.

nonsingular by (C1)
Thus dh(xp) =0, a contradiction.
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Theorem: i = f(x) + g(x)u is feedback lineariz-
able around xq if and only if the following two
conditions hold:

C1) [g(xo) adfg(xo) ... ad;_lg(xo)] has rank
n

C2) A(x) = span{g(x),adsg(x), .. ,ad? %g(x)}
is involutive in a neighborhood of xq.

» Alternative equations for feedback
linearization from proposition:

Lgh(x) = Ladfgh(x) == Lud;,zgh(x) =0

in a nbhd of x (4)
Logy15h(x0) #0. (5)
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Necessary and Sufficient Conditions for Feedback Linearization (proof)

(only if) Given that y = h(x) with r = n exists, that is (7)-(8) hold, show that
C1 and C2 are true.
We will use the following fact which holds when r = n:

. fi+j<n—2
Lygi Lh(x) = _ /=
! (=D)LL h(x) #0 ifij=n—1.
Define the matrix
dh
dL¢h

M= : [ g —adsg adfg (—1)"71ad]’371g } (6)

dr}~'h
and note that the (k,£) entry is:
My = deilh(x)(fl)é‘f1 adff] g(x)
= (-1 lLad4 L L ().
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Theorem: i = f(x) + g(x)u is feedback lineariz-
able around xq if and only if the following two
conditions hold:

C1) [g(x0) adsg(xo) -
n

C2) A(x) = span{g(x),adsg(x), .. ,ad} %g(x)}
is involutive in a neighborhood of xq.

ad;_lg(xo)] has rank

Lgh(x) = Lyg, gh(x) = adr -2,h(x) =0
in a nbhd of x 7)
Lad;qgh(xo) #0. (8)

» For the fact, see, e.g.,
Khalil, Lemma C.8
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Necessary and Sufficient Conditions for Feedback Linearization (proof)

(only if cont.)
Then, from (9):
0 {+k<n
#0 l+k=n+1.
Since the diagonal entries are nonzero, M has rank n and thus the factor
[ g —adrg ad%g (—1)"71ad]'!71g }
in (6) must have rank n as well. Thus (C1) follows.

My =

This also implies A(x) is nonsingular; thus, by the Frobenius Thm,

complete integrability = involutivity.
A(x) is completely integrable since h(x) satisfying (7) exists by assumption;
thus, we conclude involutivity (C2). O
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Theorem: i = f(x) + g(x)u is feedback lineariz-
able around xq if and only if the following two
conditions hold:

C1) [g(xo) adfg(xo) ... ad;_lg(xo)] has rank
n

C2) A(x) = span{g(x),adsg(x), .. ,ad? %g(x)}
is involutive in a neighborhood of xq.

0 ifitj<n—2
Log () = § (=1)" 1,1 h(x) £ 0
|ft+] n—1.
9)
» Form of M:
o 0 - %
0 /
R
* - *
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Xy = x +2x%
X = x3+u
X3 = X1—x3

Feedback linearizability was shown earlier by inspection: y = x3
gives relative degree = 3. Verify with the theorem above:
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Xy = x +2x%
X = x3+u
X3 = X1—x3

Feedback linearizability was shown earlier by inspection: y = x3
gives relative degree = 3. Verify with the theorem above:

x2+2x% 0

fx) = X3 glx)= |1
X1 —X3 0 i
—1 4xp |

[f.8lx)=1| O . lf,8llx)=1| 0
0 1
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Example (cont.)

Conditions O'F the theorem' Theorem: i = f(x) + g(x)u is feedback lineariz-
’ able around xq if and only if the following two

conditions hold:

C1) [g(xo) adfg(xo) ... ad;_lg(xo)] has rank
n

C2) A(x) = span{g(x),adsg(x), .. ,ad? %g(x)}
is involutive in a neighborhood of xq.

» Example:
B o= x+28
Jy = x3+tu
X3 = Xx1—x3
X +2x% 0
fx)= X3 g)=|1
Xp—X3 0
-1 4x;
Felx=1 o | Klfellx=| o
0 1
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Example (cont.)

Conditions of the theorem:

0 —1 4)61
® |1 0 0 | fullrank
0 0 1
0 -1
® A= span 11,] O involutive
0 0
0
((Z 1 0 ] satisfied by h(x) =
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Theorem: i = f(x) + g(x)u is feedback lineariz-
able around xq if and only if the following two
conditions hold:

C1) [g(xo) adfg(xo) ... ad;_lg(xo)] has rank
n

C2) A(x) = span{g(x),adsg(x), .. ,ad? %g(x)}
is involutive in a neighborhood of xq.

» Example:
6 2
X1 = x+2x
X = x3tu
3= xan-x
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