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Recall: Relative Degree

Consider the single-input single-output (SISO) nonlinear system: > Lehis called the Lie
; derivative of h along the
x=f(x)+gx)u g
(x) (x) (1) vector field f
y = h(x).

Relative degree The system (1) has relative degree r if, in a
neighborhood of the equilibrium,

LeLi 'h(x) =0 i=12,...,r—1
LoLi~"h(x) #0.

Recall: o o
y= o) + 5-8(x) u, Y= LeLph(x) +LeLeh(x)u.
ax 8x —
—— —— 5
=:Lrh(x) =:Lgh(x) =: Lh(x)
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Recall: Input-Output Linearization

If a system has a well-defined relative degree then it is input-
output linearizable:
y = Lih(x) —i—LgL]C*lh(x)u
£0
Apply preliminary feedback:

1 r
u= LgL;_lh(x)<_th(X)+v>

where v is a new input to be designed.

Choose any linear stabilizing controller that stabilizes integrator
chain y\") = y.
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Recall: Zero Dynamics

[/O Linearization+control renders the (n—r)-dimensional man-
ifold:
h(x) =Leh(x) =--- = L}flh(x) =0
invariant and attractive.
» The dynamics restricted to this manifold are called

zero dynamics and determine whether or not x =0 is
stable.

> If the origin of the zero dynamics is asymptotically stable,
the system is called minimum phase. If unstable, it is
called nonminimum phase.
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Nonlinear Changes of Variables

T:R" — R" is called a diffeomorphism if its inverse T~ exists,

and both 7 and T™! are continuously differentiable (C').
Examples:

©® & =Tx is a diffeomorphism if T is a nonsingular matrix

® & =sinx is a local diffeomorphism around x = 0, but not

global Tg
/ .
N
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Nonlinear Changes of Variables

Examples (cont):

© & =7 is not a diffeomorphism because T7!(-) is not C! at
§=0
A ér

Y
=

slope = 0
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Nonlinear Changes of Variables

How to check if & =T(x) is a local diffeomorphism?
Implicit Function Theorem
Suppose f: R" x R™ — R" is C! and there exists xy € R", & € R™

such that
5 f(x0,80) =0.
If a—f(xo,éo) is nonsingular, then in a neighborhood of (xo, &),
X
f(x,8)=0

has a unique solution x = g(&) where g is C! at & = &.

Corollary: Let f(x.&) = T(x) - &. If IF

T(-) is a local diffeomorphism around x.

is nonsingular at xg, then
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A "Normal Form" that Explicitly Displays the Zero Dynamics

Theorem: If & = f(x) +g(x)u, y = h(x) has a well-defined relative
degree r < n, then there exist a diffeomorphism T : x — [ 2 ]

zeR"" £ €R’, that transforms the system to the form:
z2=fo(z,€)
L=6

Cr = b(Z’C) —|—a(z,<:)u, y= Cl-

In particular, z=fy(z,0) represents the zero dynamics. a
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A "Normal Form" that Explicitly Displays the Zero Dynamics

To obtain this normal form, let & =
[h(x) Leh(x) ... L}_lh(x)]T, and find n — r indepen-
dent variables z such that z does not contain u.

Note that the terms b(z,{) and a(z,{) correspond to L¢(x) and
LgL;*lh(x) in the original coordinates.
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Z :fO(Z9 C)
L=&

éf = b(Z’C) +a(Z7C)u’ y= gl'

9/15



Example: X o= x
X = ox3+u
X3 = ﬁX3 —u

y = Xi.

Let & = x1, § = x2, and note that z = x, 4+ x3 is independent of
1,8, and z does not contain u. Thus, the normal form is:

t=(0+B)xs=(a+B)z—(a+p)&
G=06

sz oxz+u=oz—ab+u.
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|/O Linearizing Controller

I/O Linearizing Controller in the new coordinates (9):

5
u= —b(z,¢ +v) 2
a0 (z,€) (2)
v=—k =k (3)
where k., -+, k, are such that all roots of s +k,.s" ' + -+ +kos+

ki have negative real parts.
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|/O Linearizing Controller (cont.)

Theorem: If z=0 is locally exponentially stable for the zero
dynamics z =f(z,0), then (4)—(5) locally exponentially stabilizes
x=0.

Proof: Closed-loop system:

Z:fO(Z7C)
E=AC
where ) )
0 1 0
0 0 1
A—
1
| ki —ko —kz ... —k, |
is Hurwitz.
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v=—k G-

(fb(z, 9 +VX4)
"_kr(:r (5)
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|/O Linearizing Controller (cont.)

Proof (cont.): The Jacobian linearization at (z,{) =0 is:

1
U= - 7b(7€)+v
% 0,0y 20,0 wp(~te0+)
J=| 0z d¢ v=—kili— kel
0 A

where (zfs(0,0) is Hurwitz since z =f(z,0) is exponentially stable
by the proposition in Lecture 12. Since A is also Hurwitz, all
eigenvalues of J have negative real parts = exponential stability.
Global asymptotic stability can be guaranteed with additional
assumptions on the zero dynamics, such as ISS of

z :fO(Z, C)

with respect to the input &: .
P putc: [, <

z= fo(z0)

A 4
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Example: z= —z—|—zzc, C =—k{ > Note: the z subsystem is
(z,&) = 0 is locally exponentially stable, but not globally: solu- not 1SS
tions escape in finite time for large z(0).
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|/O Linearizing Controller for Tracking

For the output y(¢) to track a reference signal y,(z), replace (5) > y(t) is assumed to be r
with: times differentiable
v= k(G =3ul0) ~ha(Ge=3u(0) - <cr yd’ ”( N+ ()
Letey = & —ya(t), e22 5 —3a4(t), .. 2¢ - ( ). Then:

er=e

er=e3

e =Ae.
e = v—yg)(t) = —kiey —---—kre,

Thus e(r) — 0, that is y(7) — yq(t) — 0.
If y4(¢) and its derivatives are bounded, then {(7) is bounded. If
the zero dynamics z =f(z,§) is ISS with respect to §, then z(z)

is also bounded. Thus, all internal signals are bounded.
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