Lecture 17 – ME6402, Spring 2025 Feedback Linearization (continued)

Maegan Tucker

March 6, 2025

Goals of Lecture 17

▶ Normal form for input-output feedback linearizable systems

Additional Reading

- ▶ Khalil, Chapter 13
- ▶ Sastry, Chapter 9

These slides are derived from notes created by Murat Arcak and licensed under a [Cre](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ative Commons Attribution-NonCommercial-](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ShareAlike 4.0 International License.](http://creativecommons.org/licenses/by-nc-sa/4.0/)

Recall: Relative Degree

Consider the single-input single-output (SISO) nonlinear system:

$$
\begin{aligned} \dot{x} &= f(x) + g(x)u \\ y &= h(x). \end{aligned} \tag{1}
$$

Relative degree The system [\(1\)](#page-1-0) has relative degree *r* if, in a neighborhood of the equilibrium,

$$
L_g L_f^{i-1} h(x) = 0 \quad i = 1, 2, ..., r - 1
$$

$$
L_g L_f^{r-1} h(x) \neq 0.
$$

Recall:

$$
\dot{y} = \underbrace{\frac{\partial h}{\partial x}f(x)}_{=: L_f h(x)} + \underbrace{\frac{\partial h}{\partial x}g(x)}_{=: L_g h(x)} u, \qquad \ddot{y} = \underbrace{L_f L_f h(x)}_{=: L_f^2 h(x)} + L_g L_f h(x) u.
$$

 \blacktriangleright *L*_f*h* is called the *Lie* derivative of *h* along the vector field *f*

Recall: Input-Output Linearization

If a system has a well-defined relative degree then it is inputoutput linearizable:

$$
y^{(r)} = L_f^r h(x) + L_g L_f^{r-1} h(x) u
$$

$$
\neq 0
$$

Apply preliminary feedback:

$$
u = \frac{1}{L_g L_f^{r-1} h(x)} \left(-L_f^r h(x) + v \right)
$$

where *v* is a new input to be designed.

Choose any linear stabilizing controller that stabilizes integrator chain $y^{(r)} = v$.

Recall: Zero Dynamics

I/O Linearization+control renders the (*n*−*r*)-dimensional manifold:

$$
h(x) = L_f h(x) = \dots = L_f^{r-1} h(x) = 0
$$

invariant and attractive.

- \blacktriangleright The dynamics restricted to this manifold are called zero dynamics and determine whether or not $x = 0$ is stable.
- \blacktriangleright If the origin of the zero dynamics is asymptotically stable, the system is called minimum phase. If unstable, it is called nonminimum phase.

The Properties of Variables is called a *diffeomorphism* in the *T*1 exists, and **its inverse is a set of the conservation** in the *T*1 exists, and the *T*1 exists, and the *T*1 exists, and the *T*1 exists, and the *T*1

T : \mathbb{R}^n → \mathbb{R}^n is called a *diffeomorphism* if its inverse T^{-1} exists, and both T and T^{-1} are continuously differentiable $(C^1).$ Examples:

- \bullet ξ = Tx is a diffeomorphism if T is a nonsingular matrix
- $2 \xi = \sin x$ is a local diffeomorphism around $x = 0$, but not global

Nonlinear Changes of Variables

Examples (cont):

③ $\xi = x^3$ is not a diffeomorphism because $T^{-1}(\cdot)$ is not C^1 at $x = 0$ $\xi = 0$

Nonlinear Changes of Variables

How to check if $\xi = T(x)$ is a local diffeomorphism? Implicit Function Theorem $\mathsf{Suppose}\, f:\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^n$ is C^1 and there exists $x_0\in\mathbb{R}^n$, $\xi_0\in\mathbb{R}^m$ such that

$$
f(x_0,\xi_0)=0.
$$

If $\frac{\partial f}{\partial x}$ $\frac{\partial y}{\partial x}(x_0,\xi_0)$ is nonsingular, then in a neighborhood of (x_0,ξ_0) , $f(x,\xi) = 0$

has a unique solution $x\,{=}\,g(\xi)$ where g is C^1 at $\xi=\xi_0.$

 $\frac{\text{Corollary:}}{\sigma(x)}$ Let $f(x,\xi) = T(x) - \xi$. If $\frac{\partial T}{\partial x}$ is nonsingular at x_0 , then $T(\cdot)$ is a local diffeomorphism around x_0 .

A "Normal Form" that Explicitly Displays the Zero Dynamics

Theorem: If $\dot{x} = f(x) + g(x)u$, $y = h(x)$ has a well-defined relative degree $r \leq n$, then there exist a diffeomorphism $T: x \rightarrow$ $\int z$ ζ 1 ,

 $z \in \mathbb{R}^{n-r}$, $\zeta \in \mathbb{R}^r$, that transforms the system to the form:

$$
\dot{z} = f_0(z, \zeta)
$$
\n
$$
\dot{\zeta}_1 = \zeta_2
$$
\n
$$
\vdots
$$
\n
$$
\dot{\zeta}_r = b(z, \zeta) + a(z, \zeta)u, \quad y = \zeta_1.
$$

In particular, $\dot{z} = f_0(z,0)$ represents the zero dynamics.

A "Normal Form" that Explicitly Displays the Zero Dynamics

To obtain this normal form, let $\zeta =$ $[h(x)$ $L_f h(x)$... $L_f^{r-1} h(x)]^T$, and find $n - r$ independent variables *z* such that *z*˙ does not contain *u*. Note that the terms $b(z, \zeta)$ and $a(z, \zeta)$ correspond to $L_f^r(x)$ and $L_{g}L_{f}^{r-1}h(x)$ in the original coordinates.

$$
\begin{aligned}\n\dot{z} &= f_0(z, \zeta) \\
\dot{\zeta}_1 &= \zeta_2 \\
\vdots \\
\dot{\zeta}_r &= b(z, \zeta) + a(z, \zeta)u, \quad y = \zeta_1.\n\end{aligned}
$$

Example

Example: $\dot{x}_1 = x_2$

$$
\dot{x}_1 = x
$$

$$
\dot{x}_2 = \alpha x_3 + u
$$
\n
$$
\dot{x}_3 = \beta x_3 - u
$$

$$
y = x_1.
$$

Let $\zeta_1 = x_1$, $\zeta_2 = x_2$, and note that $z = x_2 + x_3$ is independent of ζ1,ζ2, and *z*˙ does not contain *u*. Thus, the normal form is:

$$
\begin{aligned}\n\dot{z} &= (\alpha + \beta)x_3 = (\alpha + \beta)z - (\alpha + \beta)\zeta_2 \\
\dot{\zeta}_1 &= \zeta_2 \\
\dot{\zeta}_2 &= \alpha x_3 + u = \alpha z - \alpha \zeta_2 + u.\n\end{aligned}
$$

I/O Linearizing Controller

I/O Linearizing Controller in the new coordinates [\(9\)](#page-7-0):

$$
u = \frac{1}{a(z,\zeta)} \left(-b(z,\zeta) + v \right) \tag{2}
$$

$$
v = -k_1 \zeta_1 \cdots - k_r \zeta_r \tag{3}
$$

where k_1, \dots, k_r are such that all roots of $s^r + k_r s^{r-1} + \dots + k_2 s +$ *k*¹ have negative real parts.

I/O Linearizing Controller (cont.)

Theorem: If $z = 0$ is locally exponentially stable for the zero dynamics $\dot{z} = f_0(z,0)$, then [\(4\)](#page-10-0)–[\(5\)](#page-10-1) locally exponentially stabilizes $x=0$.

Proof: Closed-loop system:

 $\dot{z} = f_0(z,\zeta)$ ˙ζ = *A*ζ

where

$$
A = \begin{bmatrix} 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & \dots \\ & & & \ddots & \\ -k_1 & -k_2 & -k_3 & \dots & -k_r \end{bmatrix}
$$

is Hurwitz.

$$
u = \frac{1}{a(z, \zeta)} \Big(-b(z, \zeta) + v \Big) 4
$$

$$
v = -k_1 \zeta_1 \cdots - k_r \zeta_r \tag{5}
$$

I/O Linearizing Controller (cont.)

Proof (cont.): The Jacobian linearization at $(z, \zeta) = 0$ is:

$$
J = \left[\begin{array}{cc} \frac{\partial f_0}{\partial z}(0,0) & \frac{\partial f_0}{\partial \zeta}(0,0) \\ 0 & A \end{array} \right]
$$

6

where $\frac{\partial f_0}{\partial x}$ $\frac{\partial^2 J_0}{\partial z}(0,0)$ is Hurwitz since $z = f_0(z,0)$ is exponentially stable by the proposition in Lecture 12. Since A is also Hurwitz, all eigenvalues of *J* have negative real parts \Rightarrow exponential stability. Global asymptotic stability can be guaranteed with additional assumptions on the zero dynamics, such as ISS of \overline{a} **f** \overline{b} (\overline{c} (\overline{c} (\overline{c} (\overline{c} (\overline{c} o) is exponentially stable is furnitum is allecture $z = f_0(z, v)$ is exponentially stable

$$
\dot{z} = f_0(z, \zeta)
$$

with respect to the input ξ : $\overline{\zeta} = A\overline{\zeta}$ ξ $\overline{\zeta} = f_0(z,\zeta)$

$$
\overline{}
$$

1 7

$$
u = \frac{1}{a(z, \zeta)} \left(-b(z, \zeta) + v \right)
$$

$$
v = -k_1 \zeta_1 \cdots - k_r \zeta_r
$$

Example: *^z*˙ ⁼ *^z* ⁺ *^z*2*z*, ˙ [Lecture 17 Notes – ME6402, Spring 2025](#page-0-0) 13/15

Example

 $\text{Example: } z = -z + z^2 \zeta, \quad \dot{\zeta} = -k\zeta$

 $(z,\zeta)=0$ is locally exponentially stable, but not globally: solutions escape in finite time for large *z*(0).

▶ Note: the *z* subsystem is not ISS

I/O Linearizing Controller for Tracking

For the output $y(t)$ to track a reference signal $y_d(t)$, replace [\(5\)](#page-10-1) with:

$$
v = -k_1(\zeta_1 - y_d(t)) - k_2(\zeta_2 - y_d(t)) \cdots - k_r(\zeta_r - y_d^{(r-1)}(t)) + y_d^{(r)}(t)
$$

\nLet $e_1 \triangleq \zeta_1 - y_d(t)$, $e_2 \triangleq \zeta_2 - y_d(t)$, ..., $e_r \triangleq \zeta_r - y_d^{(r-1)}(t)$. Then:
\n
$$
\begin{aligned}\n\dot{e}_1 &= e_2 \\
\dot{e}_2 &= e_3\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_4 &= 1 \\
\dot{e}_5 &= 1 \\
\dot{e}_7 &= 1 \\
\dot{e}_8 &= 1 \\
\dot{e}_9 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_4 &= 1 \\
\dot{e}_5 &= 1 \\
\dot{e}_7 &= 1 \\
\dot{e}_8 &= 1 \\
\dot{e}_9 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_4 &= 1 \\
\dot{e}_5 &= 1 \\
\dot{e}_7 &= 1 \\
\dot{e}_9 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_2 &= 1 \\
\dot{e}_3 &= 1 \\
\dot{e}_4 &= 1 \\
\dot{e}_5 &= 1 \\
\dot{e}_7 &= 1 \\
\dot{e}_8 &= 1 \\
\dot{e}_9 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_1 &= 1 \\
\dot{e}_2 &=
$$

[Lecture 17 Notes – ME6402, Spring 2025](#page-0-0) 15/15

 \blacktriangleright *y*(*t*) is assumed to be *r* times differentiable