Lecture 17 – ME6402, Spring 2025 Feedback Linearization (continued)

Maegan Tucker

March 6, 2025

Goals of Lecture 17

 Normal form for input-output feedback linearizable systems

Additional Reading

- ▶ Khalil, Chapter 13
- Sastry, Chapter 9

These slides are derived from notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Recall: Relative Degree

Consider the single-input single-output (SISO) nonlinear system:

$$\dot{x} = f(x) + g(x)u$$

$$y = h(x).$$
(1)

<u>Relative degree</u> The system (1) has *relative degree* r if, in a neighborhood of the equilibrium,

$$L_g L_f^{i-1} h(x) = 0$$
 $i = 1, 2, ..., r-1$
 $L_g L_f^{r-1} h(x) \neq 0.$

Recall:

$$\dot{y} = \underbrace{\frac{\partial h}{\partial x}f(x)}_{=:L_fh(x)} + \underbrace{\frac{\partial h}{\partial x}g(x)}_{=:L_gh(x)}u, \qquad \ddot{y} = \underbrace{L_fL_fh(x)}_{=:L_f^2h(x)} + L_gL_fh(x)u.$$

L_fh is called the Lie derivative of h along the vector field f

Lecture 17 Notes - ME6402, Spring 2025

Recall: Input-Output Linearization

If a system has a well-defined relative degree then it is inputoutput linearizable:

$$y^{(r)} = L_f^r h(x) + \underbrace{L_g L_f^{r-1} h(x)}_{\neq 0} u$$

Apply preliminary feedback:

$$u = \frac{1}{L_g L_f^{r-1} h(x)} \left(-L_f^r h(x) + \nu \right)$$

where v is a new input to be designed.

Choose any linear stabilizing controller that stabilizes integrator chain $v^{(r)} = v$.

Recall: Zero Dynamics

I/O Linearization+control renders the (n-r)-dimensional manifold:

$$h(x) = L_f h(x) = \dots = L_f^{r-1} h(x) = 0$$

invariant and attractive.

- The dynamics restricted to this manifold are called $\frac{\text{zero dynamics}}{\text{stable.}}$ and determine whether or not x = 0 is stable.
- If the origin of the zero dynamics is asymptotically stable, the system is called <u>minimum phase</u>. If unstable, it is called nonminimum phase.

Nonlinear Changes of Variables

 $T: \mathbb{R}^n \to \mathbb{R}^n$ is called a *diffeomorphism* if its inverse T^{-1} exists, and both T and T^{-1} are continuously differentiable (C^1) . Examples:

- **①** $\xi = Tx$ is a diffeomorphism if T is a nonsingular matrix
- 2 $\xi = \sin x$ is a local diffeomorphism around x = 0, but not global

Nonlinear Changes of Variables

Examples (cont):

(3)
$$\xi = x^3$$
 is not a diffeomorphism because $T^{-1}(\cdot)$ is not C^1 at $\xi = 0$

Nonlinear Changes of Variables

How to check if $\xi = T(x)$ is a local diffeomorphism? <u>Implicit Function Theorem</u> Suppose $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is C^1 and there exists $x_0 \in \mathbb{R}^n$, $\xi_0 \in \mathbb{R}^m$ such that

$$f(x_0, \xi_0) = 0.$$

f $\frac{\partial f}{\partial x}(x_0, \xi_0)$ is nonsingular, then in a neighborhood of (x_0, ξ_0) ,
 $f(x, \xi) = 0$

has a unique solution $x = g(\xi)$ where g is C^1 at $\xi = \xi_0$.

<u>Corollary</u>: Let $f(x,\xi) = T(x) - \xi$. If $\frac{\partial T}{\partial x}$ is nonsingular at x_0 , then $T(\cdot)$ is a local diffeomorphism around x_0 .

A "Normal Form" that Explicitly Displays the Zero Dynamics

<u>Theorem</u>: If $\dot{x} = f(x) + g(x)u$, y = h(x) has a well-defined relative degree $r \le n$, then there exist a diffeomorphism $T: x \to \begin{bmatrix} z \\ \zeta \end{bmatrix}$,

 $z \in \mathbb{R}^{n-r}, \ \zeta \in \mathbb{R}^r,$ that transforms the system to the form:

$$\dot{z} = f_0(z, \zeta)$$

$$\dot{\zeta}_1 = \zeta_2$$

$$\vdots$$

$$\dot{\zeta}_r = b(z, \zeta) + a(z, \zeta)u, \quad y = \zeta_1.$$

In particular, $\dot{z} = f_0(z,0)$ represents the zero dynamics.

A "Normal Form" that Explicitly Displays the Zero Dynamics

To obtain this normal form, let $\zeta = [h(x) \ L_f h(x) \ \dots \ L_f^{r-1} h(x)]^T$, and find n-r independent variables z such that \dot{z} does not contain u. Note that the terms $b(z,\zeta)$ and $a(z,\zeta)$ correspond to $L_f^r(x)$ and $L_g L_f^{r-1} h(x)$ in the original coordinates.

$$\begin{aligned} \dot{z} &= f_0(z,\zeta) \\ \dot{\zeta}_1 &= \zeta_2 \\ &\vdots \\ \dot{\zeta}_r &= b(z,\zeta) + a(z,\zeta)u, \quad y = \zeta_1. \end{aligned}$$

Example

Example:

$$\dot{x}_1 = x_2$$

$$\begin{array}{rcl} \dot{x}_2 &=& \alpha x_3 + u \\ \dot{x}_3 &=& \beta x_3 - u \end{array}$$

$$y = x_1$$
.

Let $\zeta_1 = x_1$, $\zeta_2 = x_2$, and note that $z = x_2 + x_3$ is independent of ζ_1, ζ_2 , and \dot{z} does not contain u. Thus, the normal form is:

$$\dot{z} = (\alpha + \beta)x_3 = (\alpha + \beta)z - (\alpha + \beta)\zeta_2$$
$$\dot{\zeta}_1 = \zeta_2$$
$$\dot{\zeta}_2 = \alpha x_3 + u = \alpha z - \alpha \zeta_2 + u.$$

I/O Linearizing Controller

I/O Linearizing Controller in the new coordinates (9):

$$u = \frac{1}{a(z,\zeta)} \left(-b(z,\zeta) + v \right)$$
(2)

$$v = -k_1 \zeta_1 \cdots - k_r \zeta_r \tag{3}$$

where k_1, \dots, k_r are such that all roots of $s^r + k_r s^{r-1} + \dots + k_2 s + k_1$ have negative real parts.

I/O Linearizing Controller (cont.)

<u>Theorem</u>: If z = 0 is locally exponentially stable for the zero dynamics $\dot{z} = f_0(z, 0)$, then (4)–(5) locally exponentially stabilizes x = 0.

<u>Proof:</u> Closed-loop system:

 $\dot{z} = f_0(z, \zeta)$ $\dot{\zeta} = A\zeta$

where

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & \\ 0 & 0 & 1 & \dots & \\ & & \ddots & \\ & & & \ddots & \\ & & & & 1 \\ -k_1 & -k_2 & -k_3 & \dots & -k_r \end{bmatrix}$$

is Hurwitz.

Lecture 17 Notes - ME6402, Spring 2025

$$u = \frac{1}{a(z,\zeta)} \left(-b(z,\zeta) + v \right) (4)$$
$$v = -k_1 \zeta_1 \cdots - k_r \zeta_r$$
(5)

I/O Linearizing Controller (cont.)

Proof (cont.): The Jacobian linearization at $(z, \zeta) = 0$ is:

$$J = \left[\begin{array}{cc} \frac{\partial f_0}{\partial z}(0,0) & \frac{\partial f_0}{\partial \zeta}(0,0) \\ 0 & A \end{array} \right]$$

where $\frac{\partial f_0}{\partial z}(0,0)$ is Hurwitz since $\dot{z} = f_0(z,0)$ is exponentially stable by the proposition in Lecture 12. Since A is also Hurwitz, all eigenvalues of J have negative real parts \Rightarrow exponential stability. *Global* asymptotic stability can be guaranteed with additional assumptions on the zero dynamics, such as ISS of

$$\dot{z} = f_0(z, \zeta)$$

with respect to the input ξ : $\dot{\zeta} = A\zeta$ $\dot{\zeta} = f_0(z,\zeta)$

$$u = \frac{1}{a(z,\zeta)} \left(-b(z,\zeta) + v \right)$$
$$v = -k_1 \zeta_1 \dots - k_r \zeta_r$$

Lecture 17 Notes - ME6402, Spring 2025

Example

Example: $\dot{z} = -z + z^2 \zeta$, $\dot{\zeta} = -k\zeta$

 $(z, \zeta) = 0$ is locally exponentially stable, but not globally: solutions escape in finite time for large z(0).

Note: the z subsystem is not ISS

I/O Linearizing Controller for Tracking

For the output y(t) to track a reference signal $y_d(t)$, replace (5) with:

$$\begin{aligned} v &= -k_1(\zeta_1 - y_d(t)) - k_2(\zeta_2 - \dot{y}_d(t)) \cdots - k_r(\zeta_r - y_d^{(r-1)}(t)) + y_d^{(r)}(t) \\ \text{Let } e_1 &\triangleq \zeta_1 - y_d(t), \ e_2 &\triangleq \zeta_2 - \dot{y}_d(t), \ \dots, \ e_r &\triangleq \zeta_r - y_d^{(r-1)}(t). \end{aligned}$$
Then:
$$\begin{aligned} \dot{e}_1 &= e_2 \\ \dot{e}_2 &= e_3 \\ \vdots \\ \dot{e}_r &= v - y_d^{(r)}(t) = -k_1 e_1 - \cdots - k_r e_r \end{aligned}$$
$$\begin{aligned} \dot{e} &= Ae. \\ \vdots \\ \text{Thus } e(t) \to 0, \ \text{that is } y(t) - y_d(t) \to 0. \end{aligned}$$
If $y_d(t)$ and its derivatives are bounded, \ \text{then } \zeta(t) \ \text{is bounded. If } \\ \text{the zero dynamics } \dot{z} = f_0(z,\zeta) \ \text{is ISS with respect to } \zeta, \ \text{then } z(t) \end{aligned}

is also bounded. Thus, all internal signals are bounded. Lecture 17 Notes – ME6402, Spring 2025 y(t) is assumed to be r times differentiable