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Relative Degree

Today: Relative degree, input-output linearization, zero dynam-
ics
Consider the single-input single-output (SISO) nonlinear system:

ẋ = f (x)+g(x)u

y = h(x).
(1)

Relative degree (informal definition): Number of times we need
to take the time derivative of the output to see the input:

ẏ =
∂h
∂x

f (x)
︸ ︷︷ ︸
=: Lf h(x)

+
∂h
∂x

g(x)
︸ ︷︷ ︸
=: Lgh(x)

u
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▶ Lf h is called the Lie
derivative of h along the
vector field f



Relative Degree (cont.)

If Lgh(x) ̸= 0 in an open set containing the equilibrium, then
the relative degree is equal to 1. If Lgh(x)≡ 0, continue taking
derivatives:

ÿ = Lf Lf h(x)︸ ︷︷ ︸
=: L2

f h(x)

+LgLf h(x)u.

If LgLf h(x) ̸= 0, then relative degree is 2. If LgLf h(x)≡ 0, con-
tinue.
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Relative Degree (cont.)

Definition: The system (2) has relative degree r if, in a neigh-
bourhood of the equilibrium,

LgLi−1
f h(x) = 0 i = 1,2, . . . ,r−1

LgLr−1
f h(x) ̸= 0.
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ẋ = f (x)+g(x)u

y = h(x).
(2)



Example 1

The system

ẋ1 = x2

ẋ2 =−x3
1 +u

y = x1

has relative degree

= 2.
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Example 1
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y = x1

has relative degree = 2.
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Example 2

SISO linear system:

ẋ = Ax+Bu y = Cx

Lgh(x) = CB, LgLf h(x) = CAB, . . . , LgLr−1
f = CAr−1B.

▶ CB ̸= 0 ⇒ relative degree = 1

▶ CB = 0, CAB ̸= 0 ⇒ relative degree = 2

▶ CB = · · ·= CAr−2B = 0, CAr−1B ̸= 0 ⇒ relative degree
= r

The parameters CAi−1B i = 1,2,3, . . . are called Markov param-
eters and are invariant under similarity transformations.
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Example 3

ẋ1 = x2 + x3
3 y = x1

ẋ2 = x3

ẏ = ẋ1 = x2 + x3
3

ẋ3 = u

ÿ = ẋ2 +3x2
3ẋ3 = x3 +3x2

3u

LgLf h(x) = 3x2
3 = 0 when x3 = 0, and ̸= 0 elsewhere. Thus,

this system does not have a well-defined relative degree around
x = 0.
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Input-Output Linearization

If a system has a well-defined relative degree then it is input-
output linearizable:

y(r) = Lr
f h(x)+LgLr−1

f h(x)
︸ ︷︷ ︸

̸=0

u

Apply preliminary feedback:

u =
1

LgLr−1
f h(x)

(
−Lr

f h(x)+ v

)
(3)

where v is a new input to be designed.
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Input-Output Linearization (cont.)

Then, y(r) = v is a linear system in the form of an integrator
chain:

ζ̇1 = ζ2

ζ̇2 = ζ3

...

ζ̇r = v

where ζ1 =: y = h(x), ζ2 =: ẏ = Lf h(x), . . . , ζr =: y(r−1) =

Lr−1
f h(x).
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▶

y(r)=Lr
f h(x)+LgLr−1

f h(x)
︸ ︷︷ ︸

̸=0

u

▶ u =
1

LgLr−1
f h(x)

·
(
−Lr

f h(x)+ v

)



Input-Output Linearization (cont.)

To ensure y(t)→ 0 as t → ∞, apply the feedback:

v =−k1ζ1 − k2ζ2 −·· ·− krζr

=−k1h(x)− k2Lf h(x)−·· ·− krLr−1
f h(x)

(4)

where k1, . . . ,kr are such that sr + krsr−1 + · · ·+ k2s+ k1 has all
roots in the open left half-plane.
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▶

ζ̇1 = ζ2

ζ̇2 = ζ3

...

ζ̇r = v



Zero Dynamics

Does the controller (5)-(6) achieve asymptotic stability of x = 0?
Not necessarily! It renders the (n− r)-dimensional manifold:

h(x) = Lf h(x) = · · ·= Lr−1
f h(x) = 0

invariant and attractive.

▶ The dynamics restricted to this manifold are called
zero dynamics and determine whether or not x = 0 is
stable.

▶ If the origin of the zero dynamics is asymptotically stable,
the system is called minimum phase. If unstable, it is
called nonminimum phase.
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u=
1

LgLr−1
f h(x)

(
−Lr

f h(x)+v

)

(5)

v =−k1ζ1 − k2ζ2 −·· ·− krζr

=−k1h(x)− k2Lf h(x)−
·· ·− krLr−1

f h(x)

(6)



Zero Dynamics (cont.)

Example: n = 3, r = 1
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Not necessarily! It renders the (n � r)-dimensional manifold:

h(x) = L f h(x) = · · · = Lr�1
f h(x) = 0

invariant and attractive. The dynamics restricted to this manifold are
called zero dynamics and determine whether or not x = 0 is stable.

If the origin of the zero dynamics is asymptotically stable, the system
is called minimum phase. If unstable, it is called nonminimum phase.

Example: n = 3, r = 1

h(x) = 0

minimum phase nonminimum phase

Finding the Zero Dynamics

Set y = ẏ = · · · = y(r�1) = 0 and substitute (4) with v = 0, that is:

u⇤ =
�Lr

f h(x)

LgLr�1
f h(x)

.

The remaining dynamical equations describe the zero dynamics.

Example: ẋ1 = x2

ẋ2 = ax3 + u

ẋ3 = bx3 � u

y = x1

(6)

This system has relative degree 2. With x1 = x2 = 0 and u⇤ = �ax3,
the remaining dynamical equation is

ẋ3 = (a + b)x3.

Thus this system is minimum phase if a + b < 0.

For a linear SISO system, relative degree is the difference between
the degrees of the denominator and the numerator of the transfer
function, and zeros are the roots of the numerator. The definitions of
relative degree and zero dynamics above generalize these concepts to
nonlinear systems. As an example, the transfer function for (6) is

s � (a + b)

s2(s � b)
,

which has relative degree two and a zero at s = a + b as expected.
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Finding the Zero Dynamics

Set y = ẏ = · · · = y(r−1) = 0 and substitute (5) with v = 0, that
is:

u∗ =
−Lr

f h(x)

LgLr−1
f h(x)

.

The remaining dynamical equations describe the zero dynamics.
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Finding the Zero Dynamics: Example

Example:
ẋ1 = x2

ẋ2 = αx3 +u

ẋ3 = βx3 −u

y = x1

(7)

This system has relative degree 2. With x1 = x2 = 0 and u∗ =
−αx3, the remaining dynamical equation is

ẋ3 = (α +β )x3.

Thus this system is minimum phase if α +β < 0.
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Zero Dynamics of a Linear System

For a linear SISO system, relative degree is the difference be-
tween the degrees of the denominator and the numerator of the
transfer function, and zeros are the roots of the numerator. The
definitions of relative degree and zero dynamics above generalize
these concepts to nonlinear systems.
As an example, the transfer function for (8) is

s− (α +β )

s2(s−β )
,

which has relative degree two and a zero at s = α + β as ex-
pected.
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ẋ1 = x2

ẋ2 = αx3 +u

ẋ3 = βx3 −u

y = x1

(8)



Example

Example: Cart/Pole
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Example: Cart/Pole

q `

y : output

u

m

M

ÿ =
1

M
m + sin2 q

 
u
m

+ q̇2` sin q � g sin q cos q

!

q̈ =
1

`( M
m + sin2 q)

 
� u

m
cos q � q̇2` cos q sin q +

M + m
m

g sin q

! (7)

Relative degree = 2.

To find the zero dynamics, substitute y = ẏ = 0, and

u⇤ = �m(q̇2` sin q � g sin q cos q)

in the q̈ equation:

q̈ =
g
`

sin q.

Same as the dynamics of the pole when the cart is held still:

m

q `

Nonminimum phase because q = 0 is unstable for the zero dynamics.

ÿ =
1

M
m + sin2

θ

(
u
m
+ θ̇

2ℓsinθ −gsinθ cosθ

)

θ̈ =
1

ℓ(M
m + sin2

θ)

(
− u

m
cosθ − θ̇

2ℓcosθ sinθ +
M+m

m
gsinθ

)

Relative degree = 2.
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Example (cont.)

To find the zero dynamics, substitute y = ẏ = 0, and

u∗ =−m(θ̇ 2ℓsinθ −gsinθ cosθ)

in the θ̈ equation:

θ̈ =
g
ℓ

sinθ .

Same as the dynamics of the pole when the cart is held still:
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Example: Cart/Pole

q `

y : output

u

m

M

ÿ =
1

M
m + sin2 q

 
u
m

+ q̇2` sin q � g sin q cos q

!

q̈ =
1

`( M
m + sin2 q)

 
� u

m
cos q � q̇2` cos q sin q +

M + m
m

g sin q

! (7)

Relative degree = 2.

To find the zero dynamics, substitute y = ẏ = 0, and

u⇤ = �m(q̇2` sin q � g sin q cos q)

in the q̈ equation:

q̈ =
g
`

sin q.

Same as the dynamics of the pole when the cart is held still:

m

q `

Nonminimum phase because q = 0 is unstable for the zero dynamics.
Nonminimum phase because θ = 0 is unstable for the zero dy-
namics.
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ÿ =
1

M
m + sin2

θ
·

(
u
m
+ θ̇

2ℓsinθ −gsinθ cosθ

)

θ̈ =
1

ℓ(M
m + sin2

θ)
·

(
− u

m
cosθ − θ̇

2ℓcosθ sinθ

+
M+m

m
gsinθ

)


