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Relative Degree

Today: Relative degree, input-output linearization, zero dynam- > Lehis called the Lie
ics derivative of h along the
Consider the single-input single-output (SISO) nonlinear system: USEI? e 7
k=f(x)+gx)u
(1)
y=h(x).

Relative degree (informal definition): Number of times we need
to take the time derivative of the output to see the input:
. oh oh
= 2+ e u
~— ——
=:Lrh(x) =:Lgh(x)
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Relative Degree (cont.)

If Loh(x) # 0 in an open set containing the equilibrium, then
the relative degree is equal to 1. If L,a(x) =0, continue taking

derivatives:
y= Lfoh(X) —l—Lgth(x)u.
~~—
=: Lj%h(x)
If LgLeh(x) # 0, then relative degree is 2. If L,Lsh(x) =0, con-
tinue.
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Relative Degree (cont.)

Definition: The system (2) has relative degree r if, in a neigh- ‘
bourhood of the equilibrium, - (2)
LeLi 'h(x)=0 i=12,...r—1

LeLi™'h(x) #0.
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Example 1

The system
X1 =X
Xy = —x? +u
y=Xi

has relative degree
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Example 1

The system
X1 =X
Xy = —x? +u
y=Xi

has relative degree = 2.
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Example 2

SISO linear system:
X=Ax+Bu y=Cx
Lgh(x) = CB, LgLsh(x)=CAB, ..., LLi™'=CA"™'B.
» CB#0 = relative degree =1
» CB=0, CAB#0 = relative degree = 2
» CB=---=CA"2B=0, CA"'!B#0 = relative degree

=r

The parameters CA”'B i=1,2,3,... are called Markov param-
eters and are invariant under similarity transformations.
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Example 3

X1=x2+x§ y=x
X2:X3
X3=u
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Example 3

3

X1 =xp+x3 y=2x1
Xo = X3 j):xl:Xz—l—X%
X3 =u y =i+ 3x303 = x3 4 3x3u

LeLsh(x) = 3x3 = 0 when x3 =0, and # 0 elsewhere. Thus,
this system does not have a well-defined relative degree around
x=0.
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Input-Output Linearization

If a system has a well-defined relative degree then it is input-
output linearizable:
y = Lih(x) —i—LgL]C*lh(x)u
£0
Apply preliminary feedback:

1 r
u= W <—th(x) +v> (3)

where v is a new input to be designed.
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Input-Output Linearization (cont.)

Then, y) = v is a linear system in the form of an integrator >
chain: . W) = Lih(x) + Lo Ly~ h(x)u
=06 = =
. 70
b=4 1
> u= —
: LgL;7 h(x)
Cr =V (—L}h(x)—i—v)
where {1 =y =h(x), { =y = Lih(x), ..., & =y D =

L~ Th(x).
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Input-Output Linearization (cont.)

To ensure y(t) — 0 as t — oo, apply the feedback: >
v=—kl kbl -~k @ L=06
= —kih(x) —koLyh(x) —--- — keL; " h(x) =20

where ki,... k. are such that s" +k.s" ' 4+ +kos + k; has all
roots in the open left half-plane. Gr=v
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Does the controller (5)-(6) achieve asymptotic stability of x =07

Not necessarily! It renders the (n— r)-dimensional manifold: u= Ll,%lh(x) (L} (x)+v)
h(x) = Leh(x) = - = L 'h(x) =0 o ®)
invariant and attractive.
» The dynamics restricted to this manifold are called v=—ki§i —k&—-—k{
zero dynamics and determine whether or not x =10 is = —kyh(x) — koLgh(x)—
stable. o=k L ()
> If the origin of the zero dynamics is asymptotically stable, (6)

the system is called minimum phase. If unstable, it is
called nonminimum phase.
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Zero Dynamics (cont.)

Example: n=3, r=1

minimum phase nonminimum phase
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Finding the Zero Dynamics

Set y=j3=--- =y""1) =0 and substitute (5) with v =0, that
is:

W= 1 7h(x) )
LgLflh(x)
The remaining dynamical equations describe the zero dynamics.
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Finding the Zero Dynamics: Example

X] = X2
Example:

X)=0x3+u

. ()

X3=PBx3—u

y=x
This system has relative degree 2. With x; =x, =0 and u* =
—ax3, the remaining dynamical equation is

X3 = (OC + ﬁ)X3.

Thus this system is minimum phase if o+ < 0.
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Zero Dynamics of a Linear System

For a linear SISO system, relative degree is the difference be-

tween the degrees of the denominator and the numerator of the 1=xn

transfer function, and zeros are the roots of the numerator. The o = oy tu (8)
definitions of relative degree and zero dynamics above generalize ¥3 =P —u

these concepts to nonlinear systems. Y=l

As an example, the transfer function for (8) is
s—(a+pB)
s*(s—B)
which has relative degree two and a zero at s = @+ 3 as ex-
pected.
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Example: Cart/Pole

L om
0/t
u
—» M
O O
y . output
1 u
j=-— | —+6%0sinO — gsinHcos O
Y "nf+sin26<m 8 )
.. 1 . M
0=—r—>~ —Zcose—ezécosesine—i— +mgsin6
{5 +sin” 0) m m

Relative degree = 2.
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Example (cont.)

To find the zero dynamics, substitute y =y =0, and
u* = —m(6(sinf — gsinHcos )
in the 6 equation:

é:%sine.

Same as the dynamics of the pole when the cart is held still:

o Om
%

O O

Nonminimum phase because 6 = 0 is unstable for the zero dy-
namics.
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