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Input-to-State Stability

x=f(x,u) u: exogenous input

> For linear systems, asymp. stability of the zero-input
model x = Ax implies a bounded-input bounded-state

property for x = Ax+ Bu
t
x(1) = Mxo + / A0 Bu(t)dT
0

t
= x(1)] < HeAtH!xOH/O 1A D18 lu(7) |7
t
< ke *|xo| +||B|| sup |u(17)|/ xe " dg
0<t<t 0

K
< ke %ol +—|B|| sup [u(7)].
—— (04 0<t<t

effect of )
initial condition effect of input
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Input-to-State Stability

x=f(x,u) u: exogenous input

> For linear systems, asymp. stability of the zero-input
model x = Ax implies a bounded-input bounded-state

property for x = Ax+ Bu

» For nonlinear systems x = f(x,u), asymp. stability of the
origin for the zero-input model x =f(x,0) does not
guarantee boundedness of states under bounded inputs.
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Example 1: x=—x+xu
u(t) = constant > 1 = exponential growth of x(7).
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ISS Definition

A precise formulation of the bounded-input bounded-state prop-
erty for nonlinear systems:

Definition: The system x =f(x,u), f(0,0) = 0 is said to be
input-to-state stable (ISS) if:

()] < ﬁ<|x<o>|,r>+y(0sup |u<r>|)

<7<t

for some class-KCL function B and class-/C function 7, called an
ISS gain function.
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Example: For the linear system, recall: > ISS condition:

K

< oM "
lx(1)] < ke™ x| + OCHB”OSS‘?;‘”(T)’ ()| < B(x(0)],1)

so we can take +7( sup |u(’r)|>

B(s,t) = ke ¥s e

K

= —||B
vis) = =18l
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Implications of ISS

@ x=f(x,u) ISS = i =f(x,0) globally asymptotically
stable
Proof:
Substitute u(7) = 0 in the definition above:

e(0)] < B(|x(0)],1).
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Implications of ISS (cont.)

® u(t) >0ast—oc0 = x(tr) =0 ast— oo
Proof: Need to show that for any € > 0, there exists T
such that
x(r)| <e Vt>T.
Since u(t) — 0, we can find T such that y(|u(r)|) < &/2
for all t > T;. Choose t9 = T and apply ISS definition:
Ix(0)] < B(|Ix(Th)|,t—T1)+€/2 Vt>T.

Choose T, such that

B(x(T)|.T2) < &/2.
Then, |x(t)| <eforall t>T1 +T, £ T.
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A Lyapunov Characterization of ISS

The system & = f(x,u) is ISS if there exist class-K. functions
a;, i=1,2,3,4, and a C! function V such that

oy (|x]) < V(x) < e (fx])

av

5 ) < — o (fx]) + aa(ful).
V is called an “ISS Lyapunov function.”
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A Lyapunov Characterization of ISS (cont.)

Sketch of the proof:

Let # 2 sup |u(7)|. Then:
720

x| >r 2o (u(n) = gl/f(x,u(t)) <0 Vt>0.
This implies that the level set {x: V(x) < op(r)} is invariant and

attractive. Thus, all trajectories converge to this level set which
is enclosed in the outer ball |x| <R 2 o ' (a(r)).

V(x) = aa(r)

R = a; (a2(r) = ay " (e (1))
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Example 2

Example 2: x = —x"+x’u, r: odd integer, is ISS if r > 5. Take:

V(x) _ r+1 xs+l
Young's inequality:

AP 1
<M P e
T
forany A >0, and p > 1, > 1 satisfying (p—1)(g—1) = 1.
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Example 2 (cont.)

» = —x"+xu, r: odd

xs+1u< AP |x| (s+1)p _i_%w‘q integer, r > s.
p q

Apply Young's inequality to:

> Young's inequality:

and choose A 17 1
1 1 | AP —
p:r—i— g=1+ and A such that — = = yzgp|y|+q)w|z|
s+1 p 1 p 2
1 for any A >0, and
s+1 r 1
= ¥u< > |x| * P ——|ul? p>1,q> 1 satisfying
. 1 1 (p—1D(g-1)=1
= V() < =]+ QIXI’+1 + —lul?

1 r+1 1 q
< _EM +W\u| .
h\/—/ N _

—o3(Jx]) —ay(|ul)
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Example 2 (cont.)

Note:

e i=—x+uxu (r=s=1)is not ISS as shown in Example 1.

o i=—x+x%u (r=1,5s=2)is not ISS: it exhibits finite time
escape for u(t) = constant # 0, even with an exponentially de-
caying u(t).

o i=—x"4+u(r=3,5=0)is ISS.
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Example 3

X1 = —Xx1 +x%
Xy = —xy+u.
1
Let V(x) = Ex% + %xé, a> 0 to be determined.!

V(x) = —x +x1233 +a(—x3 +x3u)
Apply the Young Inequalities:

1 1
xlx% < Ex% + Ex%
A3
3 u?
S it
A3
Choose A such that —4/3 5
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Example 3 (cont.)

Then . . . .
V(x) < —Ex% + Ex‘z‘ +a ( —x‘Z‘ + o3 4>
Let a =2: . 1 :
. 2 M 4
V(X) S —Ex + TM’M
_,_/ ——

<—o5(|x]) =0t (|ul)

for an appropriate choice of az. Thus, the system is ISS.
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Stability of Series Interconnections

X1 :f] (x1 ,XZ) x| € R™
X =fH (XZ) Xy € R™

X2

X2 = fo(x2) ——P| %1 = fi(x1,x2)

Suppose x; = 0 is globally asymptotically stable for i, =f>(x2)
and x; =0 is globally asymptotically stable for x; =f;(x1,0). Is
(x1,x2) = 0 globally asymptotically stable for the interconnec-
tion?

Answer: No.

Lecture 15 Notes — ME6402, Spring 2025 15/20



Example 4

. 2
X1 = —X1 +X7x2
Xy = —X»

exhibits finite time escape.
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Stability of ISS Interconnections

Proposition: Consider the series interconnection:
i1 = fi(x1,x2)

XQ :fz(XQ,u).
If the x; subsystem is ISS with x, viewed as an input, and the x,
subsystem is ISS with input u, then the interconnection is ISS.
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Example 3 Revisited

Example 3 revisited:

X = —x; —l—x% is ISS with respect to x;

X =—xp+u isISS with input u
= the interconnection is ISS — an alternative to the proof in
Ex. 3.
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Stability of ISS Interconnections: GAS

Corollary: (x1,x2) =0 is globally asymptotically stable when u =
0.

A 4

GAS

ISS |=GAS

Note that Example 4 fails the ISS condition for the x; subsys-
tem.
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Example: Active suspension design example in Lecture 14:

X3

(x1,x2,f3) ’ g:_NII(;AC_F%X?)

subsystem

The (x1,x2,X3)-subsystem globally asymptotically stabilized by
backstepping. The &-subsystem is an asymptotically stable linear
system, therefore ISS with respect to the input X;3.
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