Lecture 15 – ME6402, Spring 2025 Input-to-State Stability

Maegan Tucker

February 27, 2025

Goals of Lecture 15

- \blacktriangleright Define input-to-state stability (ISS)
- ▶ Provide Lyapunov characterization of ISS

Additional Reading

 \blacktriangleright Khalil 4.9

These slides are derived from notes created by Murat Arcak and licensed under a [Cre](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ative Commons Attribution-NonCommercial-](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ShareAlike 4.0 International License.](http://creativecommons.org/licenses/by-nc-sa/4.0/)

 $\dot{x} = f(x, u)$ *u*: exogenous input

 \triangleright For linear systems, asymp. stability of the zero-input model $\dot{x} = Ax$ implies a bounded-input bounded-state property for $\dot{x} = Ax + Bu$

$$
x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau
$$

\n
$$
\implies |x(t)| \le ||e^{At}|| |x_0| + \int_0^t ||e^{A(t-\tau)}|| ||B|| |u(\tau)| d\tau
$$

\n
$$
\le \kappa e^{-\alpha t} |x_0| + ||B|| \sup_{0 \le \tau \le t} |u(\tau)| \int_0^t \kappa e^{-\alpha(t-\tau)} d\tau
$$

\n
$$
\le \underbrace{\kappa e^{-\alpha t} |x_0|}_{\text{effect of initial condition}} + \underbrace{\frac{\kappa}{\alpha} ||B|| \sup_{0 \le \tau \le t} |u(\tau)|}_{\text{effect of input}}.
$$

[Lecture 15 Notes – ME6402, Spring 2025](#page-0-0) 2/20

 $\dot{x} = f(x, u)$ *u*: exogenous input

- \blacktriangleright For linear systems, asymp. stability of the zero-input model $\dot{x} = Ax$ implies a bounded-input bounded-state property for $\dot{x} = Ax + Bu$
- ▶ For nonlinear systems $\dot{x} = f(x, u)$, asymp. stability of the origin for the zero-input model $\dot{x} = f(x,0)$ does not guarantee boundedness of states under bounded inputs.

Example 1: $\dot{x} = -x + xu$ $u(t) \equiv$ constant > 1 \Longrightarrow exponential growth of *x*(*t*).

ISS Definition

A precise formulation of the bounded-input bounded-state property for nonlinear systems:

Definition: The system $\dot{x} = f(x, u)$, $f(0, 0) = 0$ is said to be input-to-state stable (ISS) if:

$$
|x(t)| \leq \beta(|x(0)|,t) + \gamma \left(\sup_{0 \leq \tau \leq t} |u(\tau)|\right)
$$

for some class- $K\mathcal{L}$ function β and class- K function γ , called an ISS gain function.

Example: For the linear system, recall:

$$
|x(t)| \leq \kappa e^{-\alpha t} |x_0| + \frac{\kappa}{\alpha} ||B|| \sup_{0 \leq \tau \leq t} |u(\tau)|
$$

so we can take

$$
\beta(s,t) = \kappa e^{-\alpha t} s
$$

$$
\gamma(s) = \frac{\kappa}{\alpha} ||B|| s
$$

▶ ISS condition:

 $|x(t)| \leq \beta(|x(0)|, t)$ $+$ γ $\sqrt{ }$ sup $\sup_{0\leq\tau\leq t} |u(\tau)|$ \setminus

Implications of ISS

$$
\bullet \ \ \dot{x} = f(x, u) \text{ ISS} \Longrightarrow \dot{x} = f(x, 0) \text{ globally asymptotically}
$$
stable

Proof:

Substitute $u(t) \equiv 0$ in the definition above: $|x(t)| \leq \beta(|x(0)|, t).$

Implications of ISS (cont.)

2 $u(t) \rightarrow 0$ as $t \rightarrow \infty \Rightarrow x(t) \rightarrow 0$ as $t \rightarrow \infty$. Proof: Need to show that for any ε > 0, there exists *T* such that

 $|x(t)| < \varepsilon \quad \forall t > T.$ Since $u(t) \to 0$, we can find T_1 such that $\gamma(|u(t)|) \leq \varepsilon/2$ for all $t > T_1$. Choose $t_0 = T_1$ and apply ISS definition:

 $|x(t)| \leq \beta(|x(T_1)|, t - T_1) + \varepsilon/2 \quad \forall t \geq T_1.$

Choose T_2 such that

 $\beta(|x(T_1)|,T_2) \leq \varepsilon/2.$ Then, $|x(t)| \leq \varepsilon$ for all $t \geq T_1 + T_2 \triangleq T$.

A Lyapunov Characterization of ISS

The system $\dot{x} = f(x, u)$ is ISS if there exist class- \mathcal{K}_{∞} functions $\alpha_i, \; i=1,2,3,4,$ and a C^1 function V such that

$$
\alpha_1(|x|) \le V(x) \le \alpha_2(|x|)
$$

$$
\frac{\partial V}{\partial x} f(x, u) \le -\alpha_3(|x|) + \alpha_4(|u|).
$$

V is called an "ISS Lyapunov function."

A Lyapunov Characterization of ISS (cont.) The system *x*˙ = *f*(*x*, *u*) is ISS if there exist class-K• functions *ai*, *i* = 1, 2, 3, 4, and a *C*¹ function *V* such that

 $\overline{\text{Sketch of the proof:}}$ $\overline{\text{Let } \bar{u} \triangleq \sup_{\tau > 0} |u(\tau)|}$. Then: τ≥0 $|x| \ge r \triangleq \alpha_3^{-1}(\alpha_4(\bar{u})) \Rightarrow \frac{\partial V}{\partial x}$ $\frac{\partial^2 f}{\partial x^2}(x, u(t)) \leq 0 \quad \forall t \geq 0.$ This implies that the level set $\{x: V(x) \leq \alpha_2(r)\}$ is invariant and attractive. Thus, all trajectories converge to this level set which is enclosed in the outer ball $|x| \le R \triangleq \alpha_1^{-1}(\alpha_2(r)).$ $\tau > 0$ $|x| \geq r \equiv \alpha_3$ α

Example 2: $\dot{x} = -x^r + x^s u$, *r*: odd integer, is ISS if $r > s$. Take: $V(x) = \frac{1}{2}x^2$ $\dot{V}(x) = -x^{r+1} + x^{s+1}u.$

Young's inequality:

$$
yz \leq \frac{\lambda^p}{p}|y|^p + \frac{1}{q\lambda^q}|z|^q
$$

for any $\lambda > 0$, and $p > 1$, $q > 1$ satisfying $(p-1)(q-1) = 1$.

Example 2 (cont.)

Apply Young's inequality to:

$$
x^{s+1}u \leq \frac{\lambda^p}{p}|x|^{(s+1)p} + \frac{1}{q\lambda^q}|u|^q
$$

and choose

$$
p = \frac{r+1}{s+1} \quad q = 1 + \frac{1}{p-1} \text{ and } \lambda \text{ such that } \frac{\lambda^p}{p} = \frac{1}{2}
$$

\n
$$
\Rightarrow x^{s+1}u \le \frac{1}{2}|x|^{r+1} + \frac{1}{q\lambda^q}|u|^q
$$

\n
$$
\Rightarrow V(x) \le -|x|^{r+1} + \frac{1}{2}|x|^{r+1} + \frac{1}{q\lambda^q}|u|^q
$$

\n
$$
\le \underbrace{-\frac{1}{2}|x|^{r+1}}_{-\alpha_3(|x|)} + \underbrace{\frac{1}{q\lambda^q}|u|^q}_{-\alpha_4(|u|)}
$$

- ▶ $\dot{x} = -x^r + x^s u$, *r*: odd integer, $r > s$.
- ▶ Young's inequality:

$$
yz \leq \frac{\lambda^p}{p}|y|^p + \frac{1}{q\lambda^q}|z|^q
$$

for any $\lambda > 0$, and $p > 1, q > 1$ satisfying $(p-1)(q-1) = 1.$

Example 2 (cont.)

Note:

- $\dot{x} = -x + xu$ ($r = s = 1$) is not ISS as shown in Example 1.
- $\dot{x} = -x + x^2 u$ ($r = 1, s = 2$) is not ISS: it exhibits finite time escape for $u(t) \equiv$ constant \neq 0, even with an exponentially decaying $u(t)$.
- $\dot{x} = -x^3 + u$ ($r = 3, s = 0$) is ISS.

$$
\dot{x}_1 = -x_1 + x_2^2
$$

$$
\dot{x}_2 = -x_2 + u.
$$

Let $V(x) = \frac{1}{2}x_1^2 + \frac{a}{4}$ $\frac{a}{4}x_2^4$, $a > 0$ to be determined.¹ $\dot{V}(x) = -x_1^2 + x_1x_2^2 + a(-x_2^4 + x_2^3u)$

Apply the Young Inequalities:

$$
x_1x_2^2 \le \frac{1}{2}x_1^2 + \frac{1}{2}x_2^4
$$

$$
x_2^3 u \le \frac{\lambda^{4/3}}{4/3}x_2^4 + \frac{1}{4\lambda^4}u^4
$$
Choose λ such that $\frac{\lambda^{4/3}}{4/3} = \frac{1}{2}$.

[Lecture 15 Notes – ME6402, Spring 2025](#page-0-0) 13/20

Example 3 (cont.)

Then
\n
$$
\dot{V}(x) \le -\frac{1}{2}x_1^2 + \frac{1}{2}x_2^4 + a\left(-\frac{1}{2}x_2^4 + \frac{1}{4\lambda^4}u^4\right)
$$
\nLet $a = 2$:
\n
$$
\dot{V}(x) \le -\frac{1}{2}x_1^2 - \frac{1}{2}x_2^4 + \frac{1}{2\lambda^4}u^4
$$
\n
$$
\le -\alpha_3(|x|) = -\alpha_4(|u|)
$$

for an appropriate choice of α_3 . Thus, the system is ISS.

Stability of Series Interconnections *Stability of Series Interconnections*

$$
\begin{aligned}\n\dot{x}_1 &= f_1(x_1, x_2) & x_1 \in \mathbb{R}^{n_1} \\
\dot{x}_2 &= f_2(x_2) & x_2 \in \mathbb{R}^{n_2} \\
\dot{x}_2 &= f_2(x_2)\n\end{aligned}
$$

Suppose $x_2 = 0$ is globally asymptotically stable for $\dot{x}_2 = f_2(x_2)$ and $x_1 = 0$ is globally asymptotically stable for $\dot{x}_1 = f_1(x_1, 0)$. Is $(x_1, x_2) = 0$ globally asymptotically stable for the interconnection? Suppose $x_2 = 0$ is globally asymptotically stable for $\dot{x}_2 = f_2(x_2)$
and $x_1 = 0$ is globally asymptotically stable for $\dot{x}_1 = f_1(x_1, 0)$. Is
 $(x_1, x_2) = 0$ globally asymptotically stable for the interconnec-
tion?
Answ

Example ⁴: *^x*˙1 ⁼ *x*¹ ⁺ *^x*² Answer: No.

$$
\dot{x}_1 = -x_1 + x_1^2 x_2
$$

$$
\dot{x}_2 = -x_2
$$

exhibits finite time escape.

Stability of ISS Interconnections

Proposition: Consider the series interconnection:

```
\dot{x}_1 = f_1(x_1, x_2)\dot{x}_2 = f_2(x_2, u).
```
If the x_1 subsystem is ISS with x_2 viewed as an input, and the x_2 subsystem is ISS with input *u*, then the interconnection is ISS.

Example 3 Revisited

Example 3 revisited:

 $\dot{x}_1 = -x_1 + x_2^2$ is ISS with respect to x_2

 $\dot{x}_2 = -x_2 + u$ is ISS with input *u*

 \Rightarrow the interconnection is ISS — an alternative to the proof in Ex. 3.

Stability of ISS Interconnections: GAS

Corollary: $(x_1, x_2) = 0$ is globally asymptotically stable when $u \equiv$ Ω . $\overline{}$ 0.

$$
\fbox{GAS} \longrightarrow \fbox{ISS} \equiv \text{GAS}
$$

Note that Example 4 fails the ISS condition for the x_1 subsystem.

Example: Active suspension design example in Lecture 14: $E = \frac{1}{2}$ active suspension design example in Lecture 14: $\frac{1}{2}$

$$
(x_1, x_2, \bar{x}_3)
$$
subsystem\n
$$
\overbrace{\xi = -\frac{k_a}{M_b A} \xi + \frac{1}{A} \bar{x}_3}
$$

The (x_1, x_2, \bar{x}_3) -subsystem globally asymptotically stabilized by backstepping. The ξ-subsystem is an asymptotically stable linear system, therefore ISS with respect to the input \bar{x}_3 .