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Input-to-State Stability

ẋ = f (x,u) u: exogenous input

▶ For linear systems, asymp. stability of the zero-input
model ẋ = Ax implies a bounded-input bounded-state
property for ẋ = Ax+Bu

x(t) = eAtx0 +
∫ t

0
eA(t−τ)Bu(τ)dτ

=⇒ |x(t)| ≤ ∥eAt∥|x0|+
∫ t

0
∥eA(t−τ)∥∥B∥|u(τ)|dτ

≤ κe−αt|x0|+∥B∥ sup
0≤τ≤t

|u(τ)|
∫ t

0
κe−α(t−τ)dτ

≤ κe−αt|x0|︸ ︷︷ ︸
effect of

initial condition

+
κ

α
∥B∥ sup

0≤τ≤t
|u(τ)|.

︸ ︷︷ ︸
effect of input
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Input-to-State Stability

ẋ = f (x,u) u: exogenous input

▶ For linear systems, asymp. stability of the zero-input
model ẋ = Ax implies a bounded-input bounded-state
property for ẋ = Ax+Bu

▶ For nonlinear systems ẋ = f (x,u), asymp. stability of the
origin for the zero-input model ẋ = f (x,0) does not
guarantee boundedness of states under bounded inputs.
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Example

Example 1: ẋ =−x+ xu
u(t)≡ constant > 1 =⇒ exponential growth of x(t).
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ISS Definition

A precise formulation of the bounded-input bounded-state prop-
erty for nonlinear systems:
Definition: The system ẋ = f (x,u), f (0,0) = 0 is said to be
input-to-state stable (ISS) if:

|x(t)| ≤ β (|x(0)|, t)+ γ

(
sup

0≤τ≤t
|u(τ)|

)

for some class-KL function β and class-K function γ , called an
ISS gain function.
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Example

Example: For the linear system, recall:

|x(t)| ≤ κe−αt|x0|+
κ

α
∥B∥ sup

0≤τ≤t
|u(τ)|

so we can take

β (s, t) = κe−αts

γ(s) =
κ

α
∥B∥s
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▶ ISS condition:

|x(t)| ≤ β (|x(0)|, t)

+ γ

(
sup

0≤τ≤t
|u(τ)|

)



Implications of ISS

1 ẋ = f (x,u) ISS =⇒ ẋ = f (x,0) globally asymptotically
stable
Proof:
Substitute u(t)≡ 0 in the definition above:
|x(t)| ≤ β (|x(0)|, t).
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Implications of ISS (cont.)

2 u(t)→ 0 as t → ∞ ⇒ x(t)→ 0 as t → ∞.
Proof: Need to show that for any ε > 0, there exists T
such that

|x(t)| ≤ ε ∀t ≥ T.
Since u(t)→ 0, we can find T1 such that γ(|u(t)|)≤ ε/2
for all t ≥ T1. Choose t0 = T1 and apply ISS definition:

|x(t)| ≤ β (|x(T1)|, t−T1)+ ε/2 ∀t ≥ T1.

Choose T2 such that

β (|x(T1)|,T2)≤ ε/2.

Then, |x(t)| ≤ ε for all t ≥ T1 +T2 ≜ T.

Lecture 15 Notes – ME6402, Spring 2025 7/20



A Lyapunov Characterization of ISS

The system ẋ = f (x,u) is ISS if there exist class-K∞ functions
αi, i = 1,2,3,4, and a C1 function V such that

α1(|x|)≤ V(x)≤ α2(|x|)
∂V
∂x

f (x,u)≤−α3(|x|)+α4(|u|).
V is called an “ISS Lyapunov function.”
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A Lyapunov Characterization of ISS (cont.)

Sketch of the proof:
Let ū ≜ sup

τ≥0
|u(τ)|. Then:

|x| ≥ r ≜ α
−1
3 (α4(ū)) ⇒ ∂V

∂x
f (x,u(t))≤ 0 ∀t ≥ 0.

This implies that the level set {x : V(x)≤ α2(r)} is invariant and
attractive. Thus, all trajectories converge to this level set which
is enclosed in the outer ball |x| ≤ R ≜ α

−1
1 (α2(r)).

nonlinear systems—lecture 16 notes 2

Substitute u(t) ⌘ 0 in the definition above: |x(t)|  b(|x(0)|, t).

2. u(t) ! 0 as t ! • ) x(t) ! 0 as t ! •.

Proof:

Need to show that for any e > 0, there exists T such that

|x(t)|  e 8t � T.

Since u(t) ! 0, we can find T1 such that g(|u(t)|)  e/2 for all
t � T1. Choose t0 = T1 and apply ISS definition:

|x(t)|  b(|x(T1)|, t � T1) + e/2 8t � T1.

Choose T2 such that

b(|x(T1)|, T2)  e/2.

Then, |x(t)|  e for all t � T1 + T2 , T.

A Lyapunov Characterization of ISS

The system ẋ = f (x, u) is ISS if there exist class-K• functions ai, i =

1, 2, 3, 4, and a C1 function V such that

a1(|x|)  V(x)  a2(|x|)
∂V
∂x

f (x, u)  �a3(|x|) + a4(|u|).

V is called an “ISS Lyapunov function.”

Sketch of the proof:

Let ū , supt�0 |u(t)|. Then:

|x| � r , a�1
3 (a4(ū)) ) ∂V

∂x
f (x, u(t))  0 8t � 0.

This implies that the level set {x : V(x)  a2(r)} is invariant and
attractive. Thus, all trajectories converge to this level set which is
enclosed in the outer ball |x|  R , a�1

1 (a2(r)).

V(x) = a2(r)

r

R = a�1
1 (a2(r)) = a�1

1 (a2(a�1
3 (a4(ū))))
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Example 2

Example 2: ẋ =−xr + xsu, r: odd integer, is ISS if r > s. Take:

V(x) =
1
2

x2

V̇(x) =−xr+1 + xs+1u.
Young’s inequality:

yz ≤ λ p

p
|y|p + 1

qλ q |z|
q

for any λ > 0, and p > 1,q > 1 satisfying (p−1)(q−1) = 1.

Lecture 15 Notes – ME6402, Spring 2025 10/20



Example 2 (cont.)

Apply Young’s inequality to:

xs+1u ≤ λ p

p
|x|(s+1)p +

1
qλ q |u|

q

and choose

p =
r+1
s+1

q = 1+
1

p−1
and λ such that

λ p

p
=

1
2

⇒ xs+1u ≤ 1
2
|x|r+1 +

1
qλ q |u|

q

⇒ V̇(x)≤−|x|r+1 +
1
2
|x|r+1 +

1
qλ q |u|

q

≤−1
2
|x|r+1

︸ ︷︷ ︸
−α3(|x|)

+
1

qλ q |u|
q.

︸ ︷︷ ︸
−α4(|u|)
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▶ ẋ =−xr + xsu, r: odd
integer, r > s.

▶ Young’s inequality:

yz ≤ λ p

p
|y|p + 1

qλ q |z|
q

for any λ > 0, and
p > 1,q > 1 satisfying
(p−1)(q−1) = 1.



Example 2 (cont.)

Note:
• ẋ =−x+ xu (r = s = 1) is not ISS as shown in Example 1.
• ẋ = −x+ x2u (r = 1,s = 2) is not ISS: it exhibits finite time
escape for u(t) ≡ constant ̸= 0, even with an exponentially de-
caying u(t).
• ẋ =−x3 +u (r = 3,s = 0) is ISS.
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Example 3

ẋ1 =−x1 + x2
2

ẋ2 =−x2 +u.

Let V(x) =
1
2

x2
1 +

a
4

x4
2, a > 0 to be determined.1

V̇(x) =−x2
1 + x1x2

2 +a(−x4
2 + x3

2u)

Apply the Young Inequalities:

x1x2
2 ≤

1
2

x2
1 +

1
2

x4
2

x3
2u ≤ λ 4/3

4/3
x4

2 +
1

4λ 4 u4

Choose λ such that
λ 4/3

4/3
=

1
2
.
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Example 3 (cont.)

Then

V̇(x)≤−1
2

x2
1 +

1
2

x4
2 +a

(
−1

2
x4

2 +
1

4λ 4 u4
)

Let a = 2:
V̇(x)≤−1

2
x2

1 −
1
2

x4
2

︸ ︷︷ ︸
≤−α3(|x|)

+
1

2λ 4 u4

︸ ︷︷ ︸
=α4(|u|)

for an appropriate choice of α3. Thus, the system is ISS.
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Stability of Series Interconnections

ẋ1 = f1(x1,x2) x1 ∈ Rn1

ẋ2 = f2(x2) x2 ∈ Rn2

nonlinear systems—lecture 16 notes 4

Choose l such that l4/3

4/3 = 1
2 .

V̇(x)  �1
2

x2
1 +

1
2

x4
2 + a

✓
�1

2
x4

2 +
1

4l4 u4
◆

Let a = 2:
V̇(x)  �1

2
x2

1 �
1
2

x4
2

| {z }
�a3(|x|)

+
1

2l4 u4

| {z }
=a4(|u|)

for an appropriate choice of a3. Thus, the system is ISS.

Stability of Series Interconnections

ẋ1 = f1(x1, x2) x1 2 Rn1

ẋ2 = f2(x2) x2 2 Rn2
(1)

ẋ2 = f2(x2) ẋ1 = f1(x1, x2)
x2

Suppose x2 = 0 is globally asymptotically stable for ẋ2 = f2(x2)

and x1 = 0 is globally asymptotically stable for ẋ1 = f1(x1, 0). Is
(x1, x2) = 0 globally asymptotically stable for the interconnection?

Answer: No.

Example 4: ẋ1 = �x1 + x2
1x2

ẋ2 = �x2

exhibits finite time escape.

Proposition: Consider the series interconnection:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x2, u).

If the x1 subsystem is ISS with x2 viewed as an input, and the x2

subsystem is ISS with input u, then the interconnection is ISS.

Example 3 revisited:

ẋ1 = �x1 + x2
2 is ISS with respect to x2

ẋ2 = �x2 + u is ISS with input u

) the interconnection is ISS — an alternative to the proof in Ex. 3.

Corollary: (x1, x2) = 0 is globally asymptotically stable when u ⌘ 0. GAS ISS ⌘ GAS

Note that Example 4 fails the ISS condition for the x1 subsystem.

Suppose x2 = 0 is globally asymptotically stable for ẋ2 = f2(x2)

and x1 = 0 is globally asymptotically stable for ẋ1 = f1(x1,0). Is
(x1,x2) = 0 globally asymptotically stable for the interconnec-
tion?
Answer: No.

Lecture 15 Notes – ME6402, Spring 2025 15/20



Example 4

ẋ1 =−x1 + x2
1x2

ẋ2 =−x2

exhibits finite time escape.
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Stability of ISS Interconnections

Proposition: Consider the series interconnection:

ẋ1 = f1(x1,x2)

ẋ2 = f2(x2,u).
If the x1 subsystem is ISS with x2 viewed as an input, and the x2

subsystem is ISS with input u, then the interconnection is ISS.
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Example 3 Revisited

Example 3 revisited:

ẋ1 =−x1 + x2
2 is ISS with respect to x2

ẋ2 =−x2 +u is ISS with input u
⇒ the interconnection is ISS — an alternative to the proof in
Ex. 3.

Lecture 15 Notes – ME6402, Spring 2025 18/20



Stability of ISS Interconnections: GAS

Corollary: (x1,x2) = 0 is globally asymptotically stable when u ≡
0.

nonlinear systems—lecture 16 notes 4

Choose l such that l4/3

4/3 = 1
2 .

V̇(x)  �1
2

x2
1 +

1
2

x4
2 + a

✓
�1

2
x4

2 +
1

4l4 u4
◆

Let a = 2:
V̇(x)  �1

2
x2

1 �
1
2

x4
2

| {z }
�a3(|x|)

+
1

2l4 u4

| {z }
=a4(|u|)

for an appropriate choice of a3. Thus, the system is ISS.

Stability of Series Interconnections

ẋ1 = f1(x1, x2) x1 2 Rn1

ẋ2 = f2(x2) x2 2 Rn2
(1)

ẋ2 = f2(x2) ẋ1 = f1(x1, x2)
x2

Suppose x2 = 0 is globally asymptotically stable for ẋ2 = f2(x2)

and x1 = 0 is globally asymptotically stable for ẋ1 = f1(x1, 0). Is
(x1, x2) = 0 globally asymptotically stable for the interconnection?

Answer: No.

Example 4: ẋ1 = �x1 + x2
1x2

ẋ2 = �x2

exhibits finite time escape.

Proposition: Consider the series interconnection:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x2, u).

If the x1 subsystem is ISS with x2 viewed as an input, and the x2

subsystem is ISS with input u, then the interconnection is ISS.

Example 3 revisited:

ẋ1 = �x1 + x2
2 is ISS with respect to x2

ẋ2 = �x2 + u is ISS with input u

) the interconnection is ISS — an alternative to the proof in Ex. 3.

Corollary: (x1, x2) = 0 is globally asymptotically stable when u ⌘ 0. GAS ISS ⌘ GAS

Note that Example 4 fails the ISS condition for the x1 subsystem.
Note that Example 4 fails the ISS condition for the x1 subsys-
tem.
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Example

Example: Active suspension design example in Lecture 14:
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Example: Active suspension design example in Lecture 14:

(x1, x2, x̄3)
subsystem

x̄3
ẋ =� ka

Mb A x + 1
A x̄3

The (x1, x2, x̄3)-subsystem globally asymptotically stabilized by back-
stepping. The x-subsystem is an asymptotically stable linear system,
therefore ISS with respect to the input x̄3.

The (x1,x2, x̄3)-subsystem globally asymptotically stabilized by
backstepping. The ξ -subsystem is an asymptotically stable linear
system, therefore ISS with respect to the input x̄3.

Lecture 15 Notes – ME6402, Spring 2025 20/20


