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Lyapunov-based Feedback Design Examples

▶ Adaptive Control (last lecture)

▶ Backstepping (this lecture)

▶ Control Lyapunov Functions (later)
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Backstepping

Feedback stabilization: Given the system

ẋ = f (x)+g(x)u

with input u, design a control law u = α(x) such that x = 0 is
asymptotically stable for the closed-loop system:

ẋ = f (x)+g(x)α(x).

Backstepping is a technique that simplifies this task for a class
of systems.
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▶ Khalil (Sec. 14.3),
Sastry (Sec. 6.8)



Backstepping

Suppose a stabilizing feedback u = α(η), α(0) = 0, is available
for:

η̇ = F(η)+G(η)u η ∈ Rn,u ∈ R, F(0) = 0,
along with a Lyapunov function V such that

∂V
∂η

(
F(η)+G(η)α(η)

)
≤−W(η)< 0 ∀η ̸= 0.

Can we modify α(η) to stabilize the augmented system below?

η̇ = F(η)+G(η)x

ẋ = u.
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Backstepping

Define the error variable z = x−α(η) and change variables:
(η ,x)→ (η ,z):

η̇ = F(η)+G(η)α(η)+G(η)z

ż = u− α̇(η ,z)

where α̇(η ,z) =
∂α

∂η
·
(

F(η)+G(η)α(η)+G(η)z
)
. Take the

new Lyapunov function:

V+(η ,z) = V(η)+
1
2

z2.

V̇+ =
∂V
∂η

(
F(η)+G(η)α(η)

)

︸ ︷︷ ︸
≤−W(η)

+
∂V
∂η

G(η)z+ z(u− α̇)

︸ ︷︷ ︸
= z

(
u− α̇ +

∂V
∂η

G(η)
)
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η̇ = F(η)+G(η)x

ẋ = u.



Backstepping

Let: u = α̇ − ∂V
∂η

G(η)− kz, k > 0.

Then, V̇+ ≤−W(η)−kz2 ⇒ (η ,z)= 0 is asymptotically stable.
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η̇ = F(η)+G(η)x

ẋ = u.

V̇+ =
∂V
∂η

(
F(η)+G(η)α(η)

)

︸ ︷︷ ︸
≤−W(η)

+
∂V
∂η

G(η)z+ z(u− α̇)

︸ ︷︷ ︸
= z

(
u− α̇ +

∂V
∂η

G(η)
)



Example

Example 1: ẋ1 = x2
1 + x2

ẋ2 = u.
Treat x2 as “virtual” control input for the x1-subsystem:

α(x1) =−k1x1 − x2
1 k1 > 0

V1(x1) =
1
2

x2
1.

Apply backstepping:
z2 = x2 −α(x1) = x2 + k1x1 + x2

1

ż2 = u− α̇

u = α̇ − ∂V1

∂x1
− k2z2, k2 > 0

=−(k1 +2x1)(x2
1 + x2)︸ ︷︷ ︸

= α̇

− x1︸︷︷︸
=

∂V1

∂x1

− k2(x2 + k1x1 + x2
1)︸ ︷︷ ︸

= z2

.
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▶

u =

α̇ − ∂V
∂η

G(η)− kz



Generalizing The Backstepping Idea

• Above we discussed backstepping over a pure integrator. The
main idea generalizes trivially to:

η̇ = F(η)+G(η)x

ẋ = f (η ,x)+g(η ,x)u

where η ∈ Rn, x ∈ R, and g(η ,x) ̸= 0 for all (η ,x) ∈ Rn+1.
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Generalizing The Backstepping Idea

With the preliminary feedback

u =
1

g(η ,x)
(−f (η ,x)+ v) (1)

the x-subsystem becomes a pure integrator: ẋ = v. Substituting
the backstepping control law from above:

v = α̇ − ∂V
∂η

G(η)− kz, z ≜ x−α(η), k > 0

into (1), we get:

u =
1

g(η ,x)

(
−f (η ,x)+ α̇ − ∂V

∂η
G(η)− kz

)
.
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Generalizing The Backstepping Idea

• Backstepping can be applied recursively to systems of the
form:

ẋ1 = f1(x1)+g1(x1)x2

ẋ2 = f2(x1,x2)+g2(x1,x2)x3

ẋ3 = f3(x1,x2,x3)+g3(x1,x2,x3)x4

...

ẋn = fn(x)+gn(x)u
where gi(x1, . . . ,xi) ̸= 0 for all x ∈ Rn, i = 2,3, · · · ,n.
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▶ Systems of this form are
called “strict feedback
systems.”



Example

Example 2:

ẋ1 = (x1x2 −1)x3
1 +(x1x2 + x2

3 −1)x1

ẋ2 = x3

ẋ3 = u.
Not in strict feedback form because x3 appears too soon. In fact,
this system is not globally stabilizable because the set x1x2 ≥ 2
is positively invariant regardless of u (next slide)
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Example (cont.)

To see that the set x1x2 ≥ 2 is positively invariant, note that
n(x) · f (x,u) = [(x1x2 −1)x3

1 +(x1x2 + x2
3 −1)x1]x2 + x3x1

and substitute x1x2 = 2 :

=
(

x3
1 +(1+ x2

3)x1

)
x2 + x3x1

=
(

x2
1 +(1+ x2

3)
)

x1x2 + x3x1

= 2x2
1 +2(1+ x2

3)+ x3x1

= 2x2
1 + x3x1 +2x2

3︸ ︷︷ ︸
≥0

+2 > 0.
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where gi(x1, . . . , xi) 6= 0 for all x 2 Rn, i = 2, 3, · · · , n.

Example 2: ẋ1 = (x1x2 � 1)x3
1 + (x1x2 + x2

3 � 1)x1

ẋ2 = x3

ẋ3 = u.

(5)

Not in strict feedback form because x3 appears too soon. In fact,
this system is not globally stabilizable because the set x1x2 � 2 is
positively invariant regardless of u:

n(x) =

2
64

x2

x1

0

3
75

x1

x2

To see this, note that

n(x) · f (x, u) = [(x1x2 � 1)x3
1 + (x1x2 + x2

3 � 1)x1]x2 + x3x1

and substitute x1x2 = 2 :

=
⇣

x3
1 + (1 + x2

3)x1

⌘
x2 + x3x1

=
⇣

x2
1 + (1 + x2

3)
⌘

x1x2 + x3x1

= 2x2
1 + 2(1 + x2

3) + x3x1

= 2x2
1 + x3x1 + 2x2

3| {z }
�0

+ 2 > 0.

Example 3: ẋ1 = x2
1x2

ẋ2 = u
(6)

Treat x2 as virtual control and let a1(x1) = �x1 which stabilizes the

x1-subsystem, as verified with Lyapunov function V1(x1) = 1
2 x2

1.
Then z2 := x2 � a1(x1) satisfies ż2 = u � ȧ1, and

u = ȧ1 �
∂V1

∂x1
x2

1 � k2z2 = �x2
1x2 � x3

1 � k2(x2 + x1)

achieves global asymptotic stability:

V =
1
2

x2
1 +

1
2

z2
2 ) V̇ = �x1

4 � k2z2
2.



Example

Example 3:
ẋ1 = x2

1x2

ẋ2 = u

Treat x2 as virtual control and let α1(x1) =−x1 which stabilizes
the x1-subsystem, as verified with Lyapunov function V1(x1) =
1
2

x2
1.

Then z2 := x2 −α1(x1) satisfies ż2 = u− α̇1, and

u = α̇1 −
∂V1

∂x1
x2

1 − k2z2 =−x2
1x2 − x3

1 − k2(x2 + x1)

achieves global asymptotic stability:

V =
1
2

x2
1 +

1
2

z2
2 ⇒ V̇ =−x1

4 − k2z2
2.
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Example (cont.)

Note that we can’t conclude exponential stability due to the quar-
tic term x4

1 above (recall the Lyapunov sufficient condition for ex-
ponential stability in Lecture 11, p.2). In fact, the linearization
of the closed-loop system proves the lack of exponential stability:[

0 0
0 −k2

]
→ λ1,2 = 0,−k2.
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Design Example

Design example: Active suspension

Mbẍs =−ka(xs − xa)− ca(ẋs − ẋa)

ẋa =
1
A

Q A: effective piston surface

Flow: Q̇ =−cf Q+ kf u u: current applied to the

solenoid valve (control input)
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▶ Krstić et al., Nonlinear
and Adaptive Control
Design, Section 2.2.2.

nonlinear systems—lecture 14 notes 4

Note that we can’t conclude exponential stability due to the quartic
term x4

1 above (recall the Lyapunov sufficient condition for expo-
nential stability in Lecture 11, p.2). In fact, the linearization of the
closed-loop system proves the lack of exponential stability:

"
0 0
0 �k2

#
! l1,2 = 0,�k2.

Design example: Active suspension Krstić et al., Nonlinear and Adaptive
Control Design, Section 2.2.2.

Q xa
xs

ca ka

Mb

car body

Mbẍs = �ka(xs � xa) � ca(ẋs � ẋa)

ẋa =
1
A

Q A: effective piston surface

Flow: Q̇ = �c f Q + k f u u: current applied to the

solenoid valve (control input)

Define state variables: x1 = xs, x2 = ẋs, x3 = xa, x4 = Q:

ẋ1 = x2

ẋ2 = � ka

Mb
(x1 � x3) �

ca

Mb
(x2 �

1
A

x4)

ẋ3 =
1
A

x4

ẋ4 = �c f x4 + k f u.

(7)

This system is not in strict feedback form due to the x4 term in ẋ2. To
overcome this problem define:

x̄3 , ka

Mb
x3 +

ca

Mb A
x4

x , x3



Design Example (cont.)

Define state variables: x1 = xs, x2 = ẋs, x3 = xa, x4 = Q:
ẋ1 = x2

ẋ2 =− ka

Mb
(x1 − x3)−

ca

Mb
(x2 −

1
A

x4)

ẋ3 =
1
A

x4

ẋ4 =−cf x4 + kf u.
This system is not in strict feedback form due to the x4 term in
ẋ2. To overcome this problem define:

x̄3 ≜
ka

Mb
x3 +

ca

MbA
x4

ξ ≜ x3
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Note that we can’t conclude exponential stability due to the quartic
term x4

1 above (recall the Lyapunov sufficient condition for expo-
nential stability in Lecture 11, p.2). In fact, the linearization of the
closed-loop system proves the lack of exponential stability:

"
0 0
0 �k2

#
! l1,2 = 0,�k2.

Design example: Active suspension Krstić et al., Nonlinear and Adaptive
Control Design, Section 2.2.2.

Q xa
xs

ca ka

Mb

car body

Mbẍs = �ka(xs � xa) � ca(ẋs � ẋa)

ẋa =
1
A

Q A: effective piston surface

Flow: Q̇ = �c f Q + k f u u: current applied to the

solenoid valve (control input)

Define state variables: x1 = xs, x2 = ẋs, x3 = xa, x4 = Q:

ẋ1 = x2

ẋ2 = � ka

Mb
(x1 � x3) �

ca

Mb
(x2 �

1
A

x4)

ẋ3 =
1
A

x4

ẋ4 = �c f x4 + k f u.

(7)

This system is not in strict feedback form due to the x4 term in ẋ2. To
overcome this problem define:

x̄3 , ka

Mb
x3 +

ca

Mb A
x4

x , x3

Mbẍs =−ka(xs − xa)

− ca(ẋs − ẋa)

ẋa =
1
A

Q

Flow: Q̇ =−cf Q+ kf u



Design Example (cont.)

Change variables to (x1,x2, x̄3,ξ ):

ẋ1 = x2

ẋ2 =− ka

Mb
x1 −

ca

Mb
x2 + x̄3

˙̄x3 =
ka − cacf

MbA
x4 +

cakf

MbA
u.

Two steps of backstepping starting with the virtual control law:

α1(x1) =−c1x1 − k1x3
1

will stabilize the (x1,x2, x̄3) subsystem.
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ẋ1 = x2

ẋ2 =− ka

Mb
(x1 − x3)−

ca

Mb
(x2 −

1
A

x4)

ẋ3 =
1
A

x4

ẋ4 =−cf x4 + kf u.

x̄3 ≜
ka

Mb
x3 +

ca

MbA
x4

ξ ≜ x3

▶ The stiff nonlinearity
k1x3

1 prevents large
excursions of x1.



Design Example (cont.)

Full (x1,x2, x̄3,ξ ) system:

nonlinear systems—lecture 14 notes 5

and change variables to (x1, x2, x̄3, x):

ẋ1 = x2

ẋ2 = � ka

Mb
x1 �

ca

Mb
x2 + x̄3

˙̄x3 =
ka � cac f

Mb A
x4 +

cak f

Mb A
u.

Two steps of backstepping starting with the virtual control law: The stiff nonlinearity k1x3
1 prevents

large excursions of x1.

a1(x1) = �c1x1 � k1x3
1

will stabilize the (x1, x2, x̄3) subsystem. Full (x1, x2, x̄3, x) system:

(x1, x2, x̄3)
subsystem

x̄3
ẋ =� ka

Mb A x + 1
A x̄3

The x-subsystem is an asymptotically stable linear system driven by
x̄3; therefore the full system is stabilized.

The ξ -subsystem is an asymptotically stable linear system driven
by x̄3; therefore the full system is stabilized.
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