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Lyapunov-based Feedback Design Examples

» Adaptive Control (last lecture)
» Backstepping (this lecture)

» Control Lyapunov Functions (later)
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Backstepping

Feedback stabilization: Given the system > Khalil (Sec. 14.3),
) Sastry (Sec. 6.8)
X =f(x)+g(x)u

with input u, design a control law u = ot(x) such that x =0 is

asymptotically stable for the closed-loop system:

x=f(x)+g(x)o(x).
Backstepping is a technique that simplifies this task for a class
of systems.
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Backstepping

Suppose a stabilizing feedback u = (1), @(0) =0, is available
for:

n=FN)+GMn)u neR" uek, F0)=0,
along with a Lyapunov function V such that

A%
o (FOD +Gmam)) < ~w(m) <0 vn #0.
Can we modify o(n) to stabilize the augmented system below?

i = F(n) + G(n)x

x=u.
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Backstepping

Define the error variable m and change variables: 1 = F(1)+ G(n)x
(1,x) = (1,2): i=u.

n=Fmn)+Gma(n)+G(n)z

t=u—am,z)
where &(1,z) = g“. (F(n) +G(n)a(n) +G(n)z). Take the
new Lyapunov func?ion:

Vi(n,2) =V(n) +%z2-
vV
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Backstepping

Let: u:d—ggG(n)—kz, k> 0. 1 =Fn)+G(n)x

Then, V; < -W(n)—kz* = (n,z) =0 is asymptotically stable.
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L2
Example 1: e -
Xz = U.
u=
Treat x, as "virtual” control input for the x;-subsystem: ov
Ol(x1)=—k1x1—x% k>0 (X—%G(n)—kl
1
Vi(x)) = Zx%.

Apply backstepping:

2
22 =x3— a(x1) =x+ kx| +x]

H=u—«o
. dV
u:a———kzm, k, >0
(9)61
= —(k+2x)(xF+x) = x1 —ka(xr Fkixy 7).
~— N —
=qQ . Vi =22
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Generalizing The Backstepping ldea

e Above we discussed backstepping over a pure integrator. The
main idea generalizes trivially to:

n=Fm+G6n)x
x:f(n7x)+g(nax)u
where n € R", x € R, and g(n,x) # 0 for all (n,x) € R""!.
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Generalizing The Backstepping ldea

With the preliminary feedback
1

g ) e

the x-subsystem becomes a pure integrator: x = v. Substituting
the backstepping control law from above:

v:a—g;/G(n)—kz, z2x—a(n), k>0

into (1), we get:

1

A%
U= e (—f(n,x)Jra—anG(n) —kz> )
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Generalizing The Backstepping ldea

e Backstepping can be applied recursively to systems of the > Systems of this form are
form: called “strict feedback
X1 =fi(x1) +g1(x1)x systems.

X2 = fo(x1,X2) + g2 (x1,%2)x3

X3 = f3(x1,x2,x3) + g3(x1,%2,x3)x4

Xn = fu(x) + gn(x)u
where g;(x1,...,x;) #0 for all x e R", i =2,3,--- |n.
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Example 2:
i1 = (xix0 — D)x3 + (xpxp + 00 — Dy
Xy = X3
X3=u.
Not in strict feedback form because x5 appears too soon. In fact,

this system is not globally stabilizable because the set xjx, > 2
is positively invariant regardless of u (next slide)
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Example (cont.)

To see that the set xjxp > 2 is positively invariant, note that X o
n(x) - f(x,u) = [(x1x2 — 1) + (x122 + x5 — 1)x1]x2 + 3% /H(X) = |:X1 }

and substitute xjx =2 :

= (x? + (1 +x§)X1>X2 +X3X1

= (x% +(1 —i—x%))xlxz 4 x3x1

=202 +2(1+x3) +x3x1
= Zx% + x3x1 +2x§ +2>0.
-

>0
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Example 3: . 5
X1 = X1X2

Xr=1u

Treat xy as virtual control and let which stabilizes

the xj-subsystem, as verified with Lyapunov function Vi(x;) =

1
1o
Then zp :=x; — a;(x1) satisfies 2, = u — ¢, and
. dV
u= 0o — Wx% —kozo = —x%xg —x? — ko (x2 +x1)
1

achieves global asymptotic stability:

1 1 ,
V= EX%—FEZ% = V= —x14—k2z%.
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Example (cont.)

Note that we can't conclude exponential stability due to the quar-
tic term x] above (recall the Lyapunov sufficient condition for ex-
ponential stability in Lecture 11, p.2). In fact, the linearization
of the closed-loop system proves the lack of exponential stability:

0 O
— M2 =0,—k.
[0 k2] 12 2
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Design Example

Design example: Active suspension > Krsti¢ et al., Nonlinear
and Adaptive Control
Design, Section 2.2.2.

Mpis = _ka(xs _xa) - Ca(xs _xa)

_ 1 .
X, = XQ A: effective piston surface car body |

Flow: Q = —crQ + ksu u: current applied to the

solenoid valve (control input)
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Design Example (cont.)

Define state variables: x; = x;, xo0 = X;, X3 = x4, x4 = O:

X1 =x
k 1
Xy = _ﬁab(xl —x3) — A%,(XZ - Xu)
1
X3 = ;{XA

X4 = —cpxs+kru.
This system is not in strict feedback form due to the x4 term in
X>. To overcome this problem define:

e,y G
=Bt
E=x
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Design Example (cont.)

Change variables to (x1,x2,%3,&):

X] = X2

. kq Ca _
Xy = bel be2 + X3
. kq — cacy Caky
X3 = MyA X4+ MA u.

Two steps of backstepping starting with the virtual control law:

(04] (xl) = —C1X] —klx?

will stabilize the (x,x;,%3) subsystem.
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X1 =X2
Ca 1
X2 = *ATb(xl —x3) ﬁb(xz - Xu)
1
X3 = Kx4
X4 = —cpxq +keu
X3 %)@ + IWCZAX4
£2n

» The stiff nonlinearity
klx? prevents large
excursions of xj.
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Design Example (cont.)

Full (x1,x2,%3,&) system:

X3

(.X'1,XQ,JE3) ’ CZ_I\/};;AQ’_’_%X:;

subsystem

The &-subsystem is an asymptotically stable linear system driven
by x3; therefore the full system is stabilized.
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