Lecture 14 – ME6402, Spring 2025 **Backstepping**

Maegan Tucker

February 20, 2025

Goals of Lecture 14

▶ Lyapunov-based design: Backstepping

Additional Reading

- \blacktriangleright Khalil 14.3
- ▶ Sastry 6.8

These slides are derived from notes created by Murat Arcak and licensed under a [Cre](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ative Commons Attribution-NonCommercial-](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ShareAlike 4.0 International License.](http://creativecommons.org/licenses/by-nc-sa/4.0/)

- ▶ Adaptive Control (last lecture)
- \blacktriangleright Backstepping (this lecture)
- ▶ Control Lyapunov Functions (later)

Feedback stabilization: Given the system

 $\dot{x} = f(x) + g(x)u$

with input *u*, design a control law $u = \alpha(x)$ such that $x = 0$ is asymptotically stable for the closed-loop system:

 $\dot{x} = f(x) + g(x)\alpha(x)$.

Backstepping is a technique that simplifies this task for a class of systems.

 \blacktriangleright Khalil (Sec. 14.3), Sastry (Sec. 6.8)

Suppose a stabilizing feedback $u = \alpha(\eta)$, $\alpha(0) = 0$, is available for:

$$
\dot{\eta} = F(\eta) + G(\eta)u \quad \eta \in \mathbb{R}^n, u \in \mathbb{R}, \ F(0) = 0,
$$

along with a Lyapunov function *V* such that

$$
\frac{\partial V}{\partial \eta}\Big(F(\eta)+G(\eta)\alpha(\eta)\Big)\leq -W(\eta)<0 \quad \forall \eta\neq 0.
$$

Can we modify $\alpha(\eta)$ to stabilize the augmented system below?

$$
\dot{\eta} = F(\eta) + G(\eta)x
$$

$$
\dot{x} = u.
$$

Define the error variable $|z = x - \alpha(\eta)|$ and change variables: $(n, x) \rightarrow (n, z)$: $\dot{\eta} = F(\eta) + G(\eta)\alpha(\eta) + G(\eta)z$ $\dot{z} = u - \dot{\alpha}(n, z)$

where $\dot{\alpha}(\eta,z) = \frac{\partial \alpha}{\partial \eta}$. $(F(\eta) + G(\eta)\alpha(\eta) + G(\eta)z)$. Take the new Lyapunov function:

$$
V_{+}(\eta, z) = V(\eta) + \frac{1}{2}z^{2}.
$$

$$
\dot{V}_{+} = \frac{\partial V}{\partial \eta} \Big(F(\eta) + G(\eta) \alpha(\eta) \Big) + \frac{\partial V}{\partial \eta} G(\eta) z + z(u - \dot{\alpha})
$$

$$
\leq -W(\eta)
$$

$$
= z \Big(u - \dot{\alpha} + \frac{\partial V}{\partial \eta} G(\eta) \Big)
$$

 $\dot{\eta} = F(\eta) + G(\eta)x$ $\dot{x} = u$.

[Lecture 14 Notes – ME6402, Spring 2025](#page-0-0) 5/18

Let:
$$
u = \dot{\alpha} - \frac{\partial V}{\partial \eta}G(\eta) - kz, \quad k > 0.
$$

Then, $\dot{V}_{+} \leq -W(\eta) - kz^2 \Rightarrow (\eta, z) = 0$ is asymptotically stable.

$$
\hat{\eta} = F(\eta) + G(\eta)x
$$

$$
\hat{x} = u.
$$

$$
\dot{V}_{+} = \underbrace{\frac{\partial V}{\partial \eta} \Big(F(\eta) + G(\eta) \alpha(\eta) \Big)}_{\leq -W(\eta)}
$$

+
$$
\frac{\partial V}{\partial \eta}G(\eta)z + z(u - \dot{\alpha})
$$

=
$$
z(u - \dot{\alpha} + \frac{\partial V}{\partial \eta}G(\eta))
$$

Example

Example 1:

$$
\dot{x}_1 = x_1^2 + x_2
$$

 $\dot{x}_2 = u.$

Treat x_2 as "virtual" control input for the x_1 -subsystem:

$$
\alpha(x_1) = -k_1 x_1 - x_1^2 \quad k_1 > 0
$$

$$
V_1(x_1) = \frac{1}{2} x_1^2.
$$

Apply backstepping:

Example 1:
\n
$$
x_1 = x_1 + x_2
$$
\n
$$
x_2 = u.
$$
\nTreat x_2 as "virtual" control input for the x_1 -subsystem:

\n
$$
\alpha(x_1) = -k_1x_1 - x_1^2 \quad k_1 > 0
$$
\n
$$
V_1(x_1) = \frac{1}{2}x_1^2.
$$
\nApply backstepping:

\n
$$
z_2 = x_2 - \alpha(x_1) = x_2 + k_1x_1 + x_1^2
$$
\n
$$
\dot{z}_2 = u - \dot{\alpha}
$$
\n
$$
u = \dot{\alpha} - \frac{\partial V_1}{\partial x_1} - k_2z_2, \quad k_2 > 0
$$
\n
$$
= \frac{-(k_1 + 2x_1)(x_1^2 + x_2) - x_1}{x_2} - \frac{k_2(x_2 + k_1x_1 + x_1^2)}{x_2}
$$
\n
$$
= \frac{\partial V_1}{\partial x_1}
$$
\nLet the 14 Notes – ME6402, Spring 2025

\n
$$
= \frac{\partial V_1}{\partial x_1} \qquad \qquad = \dot{z}_2
$$
\n7/18

 $\frac{\partial}{\partial \eta}G(\eta) - kz$

Generalizing The Backstepping Idea

• Above we discussed backstepping over a pure integrator. The main idea generalizes trivially to:

$$
\dot{\eta} = F(\eta) + G(\eta)x
$$

$$
\dot{x} = f(\eta, x) + g(\eta, x)u
$$

where $\eta \in \mathbb{R}^n$, $x \in \mathbb{R}$, and $g(\eta, x) \neq 0$ for all $(\eta, x) \in \mathbb{R}^{n+1}$.

Generalizing The Backstepping Idea

With the preliminary feedback

$$
u = \frac{1}{g(\eta, x)} (-f(\eta, x) + v)
$$
 (1)

the *x*-subsystem becomes a pure integrator: $\dot{x} = v$. Substituting the backstepping control law from above:

$$
v = \dot{\alpha} - \frac{\partial V}{\partial \eta}G(\eta) - kz, \quad z \triangleq x - \alpha(\eta), \quad k > 0
$$

into (1) , we get:

$$
u = \frac{1}{g(\eta, x)} \left(-f(\eta, x) + \dot{\alpha} - \frac{\partial V}{\partial \eta} G(\eta) - kz \right).
$$

Generalizing The Backstepping Idea

• Backstepping can be applied recursively to systems of the form:

$$
\begin{aligned}\n\dot{x}_1 &= f_1(x_1) + g_1(x_1)x_2 \\
\dot{x}_2 &= f_2(x_1, x_2) + g_2(x_1, x_2)x_3 \\
\dot{x}_3 &= f_3(x_1, x_2, x_3) + g_3(x_1, x_2, x_3)x_4 \\
&\vdots \\
\dot{x}_n &= f_n(x) + g_n(x)u \\
\text{where } g_i(x_1, \dots, x_i) & \neq 0 \text{ for all } x \in \mathbb{R}^n, \ i = 2, 3, \dots, n.\n\end{aligned}
$$

▶ Systems of this form are called "strict feedback systems."

Example

Example 2:

$$
\dot{x}_1 = (x_1x_2 - 1)x_1^3 + (x_1x_2 + x_3^2 - 1)x_1
$$

\n
$$
\dot{x}_2 = x_3
$$

\n
$$
\dot{x}_3 = u.
$$

Not in strict feedback form because x_3 appears too soon. In fact, this system is not globally stabilizable because the set $x_1x_2 > 2$ is positively invariant regardless of *u* (next slide)

Example (cont.)

To see that the set $x_1x_2 > 2$ is positively invariant, note that $n(x) \cdot f(x, u) = [(x_1x_2 - 1)x_1^3 + (x_1x_2 + x_3^2 - 1)x_1]x_2 + x_3x_1$ and substitute $x_1x_2 = 2$:

> $=\left(x_1^3 + (1+x_3^2)x_1\right)x_2 + x_3x_1$ $=\left(x_1^2 + (1+x_3^2)\right)x_1x_2 + x_3x_1$ $= 2x_1^2 + 2(1 + x_3^2) + x_3x_1$ $= 2x_1^2 + x_3x_1 + 2x_3^2 + 2 > 0.$ ≥ 0

positively invariant regardless of *u*:

Example

Example 3:

$$
\dot{x}_1 = x_1^2 x_2
$$

$$
\dot{x}_2 = u
$$

Treat x_2 as virtual control and let $\alpha_1(\overline{x_1}) = -x_1$ which stabilizes the *x*₁-subsystem, as verified with Lyapunov function $V_1(x_1)$ = 1 $\frac{1}{2}x_1^2$. Then $z_2 := x_2 - \alpha_1(x_1)$ satisfies $\dot{z}_2 = u - \dot{\alpha}_1$, and $u = \dot{\alpha}_1 - \frac{\partial V_1}{\partial x_1}$ $\frac{\partial v_1}{\partial x_1}x_1^2 - k_2z_2 = -x_1^2x_2 - x_1^3 - k_2(x_2 + x_1)$

achieves global asymptotic stability:

$$
V = \frac{1}{2}x_1^2 + \frac{1}{2}z_2^2 \implies V = -x_1^4 - k_2z_2^2.
$$

[Lecture 14 Notes – ME6402, Spring 2025](#page-0-0) 13/18

Example (cont.)

Note that we can't conclude exponential stability due to the quartic term x_1^4 above (recall the Lyapunov sufficient condition for exponential stability in Lecture 11, p.2). In fact, the linearization of the closed-loop system proves the lack of exponential stability:

$$
\left[\begin{array}{cc} 0 & 0 \\ 0 & -k_2 \end{array}\right] \rightarrow \lambda_{1,2} = 0, -k_2.
$$

Design Example

Design example: Active suspension

$$
M_b \ddot{x}_s = -k_a(x_s - x_a) - c_a(\dot{x}_s - \dot{x}_a)
$$

$$
\dot{x}_a = \frac{1}{A}Q \qquad A: \text{ effect}
$$

fective piston surface

Flow: $\dot{Q} = -c_f Q + k_f u$ *u*: current applied to the solenoid valve (control input) ▶ Krstić et al., Nonlinear and Adaptive Control Design, Section 2.2.2. Krstić et al., Nonlinear

Design Example (cont.)

Define state variables: $x_1 = x_s$, $x_2 = \dot{x}_s$, $x_3 = x_a$, $x_4 = Q$:

$$
\dot{x}_1 = x_2
$$

\n
$$
\dot{x}_2 = -\frac{k_a}{M_b}(x_1 - x_3) - \frac{c_a}{M_b}(x_2 - \frac{1}{A}x_4)
$$

\n
$$
\dot{x}_3 = \frac{1}{A}x_4
$$

$$
\dot{x}_4 = -c_f x_4 + k_f u.
$$

This system is not in strict feedback form due to the *x*⁴ term in \dot{x}_2 . To overcome this problem define:

$$
\bar{x}_3 \triangleq \frac{k_a}{M_b} x_3 + \frac{c_a}{M_b A} x_4
$$

$$
\xi \triangleq x_3
$$

Mb

car body

$$
-c_a(\dot{x}_s - \dot{x}_a)
$$

$$
\dot{x}_a = \frac{1}{A}Q
$$

Flow: $\dot{Q} = -c_fQ + k_f u$

 $c_a \rightarrow \epsilon$

 $\int x_a$

 x_c

[Lecture 14 Notes – ME6402, Spring 2025](#page-0-0) 16/18 and the state of the

Design Example (cont.)

Change variables to $(x_1, x_2, \bar{x}_3, \xi)$:

$$
\dot{x}_1 = x_2
$$

\n
$$
\dot{x}_2 = -\frac{k_a}{M_b}x_1 - \frac{c_a}{M_b}x_2 + \bar{x}_3
$$

\n
$$
\dot{x}_3 = \frac{k_a - c_a c_f}{M_b A}x_4 + \frac{c_a k_f}{M_b A}u.
$$

Two steps of backstepping starting with the virtual control law:

$$
\alpha_1(x_1) = -c_1x_1 - k_1x_1^3
$$

will stabilize the (x_1, x_2, \bar{x}_3) subsystem.

$$
\dot{x}_1 = x_2
$$
\n
$$
\dot{x}_2 = -\frac{k_a}{M_b}(x_1 - x_3) - \frac{c_a}{M_b}(x_2 - \frac{1}{A}x_4)
$$
\n
$$
\dot{x}_3 = \frac{1}{A}x_4
$$
\n
$$
\dot{x}_4 = -c_f x_4 + k_f u.
$$
\n
$$
\bar{x}_3 \triangleq \frac{k_a}{M_b}x_3 + \frac{c_a}{M_b A}x_4
$$
\n
$$
\xi \triangleq x_3
$$

 \blacktriangleright The stiff nonlinearity $k_1x_1^3$ prevents large excursions of *x*1.

Design Example (cont.) *^a*1(*x*1) = *c*1*x*¹ *^k*1*x*³

Full $(x_1, x_2, \bar{x}_3, \xi)$ system:

$$
(x_1, x_2, \bar{x}_3)
$$
subsystem\n
$$
\overbrace{\xi = -\frac{k_a}{M_b A} \xi + \frac{1}{A} \bar{x}_3}
$$

The *x*-subsystem is an asymptotically stable linear system driven by The ξ -subsystem is an asymptotically stable linear system driven by \bar{x}_3 ; therefore the full system is stabilized.