Lecture 14 – ME6402, Spring 2025 Backstepping

Maegan Tucker

February 20, 2025

Goals of Lecture 14

 Lyapunov-based design: Backstepping

Additional Reading

- Khalil 14.3
- Sastry 6.8

These slides are derived from notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

- Adaptive Control (last lecture)
- Backstepping (this lecture)
- Control Lyapunov Functions (later)

Feedback stabilization: Given the system

 $\dot{x} = f(x) + g(x)u$

with input u, design a control law $u = \alpha(x)$ such that x = 0 is asymptotically stable for the closed-loop system:

 $\dot{x} = f(x) + g(x)\alpha(x).$

Backstepping is a technique that simplifies this task for a class of systems.

Khalil (Sec. 14.3),
 Sastry (Sec. 6.8)

Suppose a stabilizing feedback $u = \alpha(\eta)$, $\alpha(0) = 0$, is available for:

$$\dot{\boldsymbol{\eta}} = F(\boldsymbol{\eta}) + G(\boldsymbol{\eta})\boldsymbol{u} \quad \boldsymbol{\eta} \in \mathbb{R}^n, \boldsymbol{u} \in \mathbb{R}, \ F(0) = 0,$$

along with a Lyapunov function V such that

$$rac{\partial V}{\partial \eta} \Big(F(\eta) + G(\eta) lpha(\eta) \Big) \leq - W(\eta) < 0 \quad orall \eta
eq 0.$$

Can we modify $lpha(\eta)$ to stabilize the augmented system below?

$$\dot{\boldsymbol{\eta}} = F(\boldsymbol{\eta}) + G(\boldsymbol{\eta})x$$
$$\dot{\boldsymbol{x}} = \boldsymbol{u}.$$

Define the error variable $z = x - \alpha(\eta)$ and change variables: $(\eta, x) \rightarrow (\eta, z)$: $\dot{\eta} = F(\eta) + G(\eta)\alpha(\eta) + G(\eta)z$

$$\dot{z} = u - \dot{lpha}(\eta, z)$$

where $\dot{lpha}(\eta, z) = \frac{\partial lpha}{\partial \eta} \cdot \left(F(\eta) + G(\eta) lpha(\eta) + G(\eta)z\right)$. Take the
new Lyapunov function:

$$V_{+}(\eta, z) = V(\eta) + \frac{1}{2}z^{2}.$$

$$\dot{V}_{+} = \underbrace{\frac{\partial V}{\partial \eta} \left(F(\eta) + G(\eta)\alpha(\eta) \right)}_{\leq -W(\eta)} + \underbrace{\frac{\partial V}{\partial \eta} G(\eta)z + z(u - \dot{\alpha})}_{= z \left(u - \dot{\alpha} + \frac{\partial V}{\partial \eta} G(\eta) \right)}$$

 $\dot{\boldsymbol{\eta}} = F(\boldsymbol{\eta}) + G(\boldsymbol{\eta})x$ $\dot{\boldsymbol{x}} = \boldsymbol{u}.$

Lecture 14 Notes - ME6402, Spring 2025

Let:
$$u = \dot{\alpha} - \frac{\partial V}{\partial \eta} G(\eta) - kz, \quad k > 0.$$

Then, $\dot{V}_+ \leq -W(\eta) - kz^2 \Rightarrow (\eta, z) = 0$ is asymptotically stable.

$$\dot{\boldsymbol{\eta}} = F(\boldsymbol{\eta}) + G(\boldsymbol{\eta})x$$
$$\dot{\boldsymbol{x}} = \boldsymbol{u}.$$

$$\dot{V}_{+} = \underbrace{rac{\partial V}{\partial \eta} \Big(F(\eta) + G(\eta) lpha(\eta) \Big)}_{\leq -W(\eta)}$$

+
$$\underbrace{\frac{\partial V}{\partial \eta}G(\eta)z + z(u - \dot{\alpha})}_{= z\left(u - \dot{\alpha} + \frac{\partial V}{\partial \eta}G(\eta)\right)}$$

Example

Example 1:

$$\dot{x}_1 = x_1^2 + x_2$$

 $\dot{x}_2 = u.$

Treat x_2 as "virtual" control input for the x_1 -subsystem:

$$lpha(x_1) = -k_1 x_1 - x_1^2$$
 $k_1 > 0$
 $V_1(x_1) = \frac{1}{2} x_1^2.$

Apply backstepping:

$$z_{2} = x_{2} - \alpha(x_{1}) = x_{2} + k_{1}x_{1} + x_{1}^{2}$$

$$\dot{z}_{2} = u - \dot{\alpha}$$

$$u = \dot{\alpha} - \frac{\partial V_{1}}{\partial x_{1}} - k_{2}z_{2}, \quad k_{2} > 0$$

$$= \underbrace{-(k_{1} + 2x_{1})(x_{1}^{2} + x_{2})}_{= \dot{\alpha}} - \underbrace{x_{1}}_{= \frac{\partial V_{1}}{\partial x_{1}}} - k_{2}\underbrace{(x_{2} + k_{1}x_{1} + x_{1}^{2})}_{= z_{2}}.$$

$$= \frac{\partial V_{1}}{\partial x_{1}}$$

Lecture ~~

u = $\dot{\alpha} - \frac{\partial V}{\partial \eta} G(\eta) - kz$

Generalizing The Backstepping Idea

• Above we discussed backstepping over a pure integrator. The main idea generalizes trivially to:

$$\dot{\boldsymbol{\eta}} = F(\boldsymbol{\eta}) + G(\boldsymbol{\eta})x$$
$$\dot{\boldsymbol{x}} = f(\boldsymbol{\eta}, \boldsymbol{x}) + g(\boldsymbol{\eta}, \boldsymbol{x})u$$

where $\eta \in \mathbb{R}^n$, $x \in \mathbb{R}$, and $g(\eta, x) \neq 0$ for all $(\eta, x) \in \mathbb{R}^{n+1}$.

Generalizing The Backstepping Idea

With the preliminary feedback

$$u = \frac{1}{g(\eta, x)} (-f(\eta, x) + v) \tag{1}$$

the *x*-subsystem becomes a pure integrator: $\dot{x} = v$. Substituting the backstepping control law from above:

$$v = \dot{\alpha} - \frac{\partial V}{\partial \eta} G(\eta) - kz, \quad z \triangleq x - \alpha(\eta), \quad k > 0$$

into (1), we get:

$$u = \frac{1}{g(\eta, x)} \left(-f(\eta, x) + \dot{\alpha} - \frac{\partial V}{\partial \eta} G(\eta) - kz \right).$$

Generalizing The Backstepping Idea

• Backstepping can be applied recursively to systems of the form:

$$\begin{split} \dot{x}_1 &= f_1(x_1) + g_1(x_1)x_2 \\ \dot{x}_2 &= f_2(x_1, x_2) + g_2(x_1, x_2)x_3 \\ \dot{x}_3 &= f_3(x_1, x_2, x_3) + g_3(x_1, x_2, x_3)x_4 \\ &\vdots \\ \dot{x}_n &= f_n(x) + g_n(x)u \\ \end{split}$$
where $g_i(x_1, \dots, x_i) \neq 0$ for all $x \in \mathbb{R}^n$, $i = 2, 3, \dots, n$.

Systems of this form are called "strict feedback systems."

Example

Example 2:

$$\dot{x}_1 = (x_1 x_2 - 1) x_1^3 + (x_1 x_2 + x_3^2 - 1) x_1$$
$$\dot{x}_2 = x_3$$
$$\dot{x}_3 = u.$$

Not in strict feedback form because x_3 appears too soon. In fact, this system is not globally stabilizable because the set $x_1x_2 \ge 2$ is positively invariant regardless of u (next slide)

Example (cont.)

To see that the set $x_1x_2 \ge 2$ is positively invariant, note that $n(x) \cdot f(x,u) = [(x_1x_2 - 1)x_1^3 + (x_1x_2 + x_3^2 - 1)x_1]x_2 + x_3x_1$

and substitute $x_1x_2 = 2$:

$$= \left(x_1^3 + (1+x_3^2)x_1\right)x_2 + x_3x_1$$

= $\left(x_1^2 + (1+x_3^2)\right)x_1x_2 + x_3x_1$
= $2x_1^2 + 2(1+x_3^2) + x_3x_1$
= $2x_1^2 + x_3x_1 + 2x_3^2 + 2 > 0.$

Example

Example 3:

$$\dot{x}_1 = x_1^2 x_2$$
$$\dot{x}_2 = u$$

Treat x_2 as virtual control and let $\alpha_1(x_1) = -x_1$ which stabilizes the x_1 -subsystem, as verified with Lyapunov function $V_1(x_1) = \frac{1}{2}x_1^2$. Then $z_2 := x_2 - \alpha_1(x_1)$ satisfies $\dot{z}_2 = u - \dot{\alpha}_1$, and $u = \dot{\alpha}_1 - \frac{\partial V_1}{\partial x_1}x_1^2 - k_2z_2 = -x_1^2x_2 - x_1^3 - k_2(x_2 + x_1)$

achieves global asymptotic stability:

$$V = \frac{1}{2}x_1^2 + \frac{1}{2}z_2^2 \quad \Rightarrow \quad \dot{V} = -x_1^4 - k_2 z_2^2.$$

Lecture 14 Notes - ME6402, Spring 2025

Example (cont.)

Note that we can't conclude exponential stability due to the quartic term x_1^4 above (recall the Lyapunov sufficient condition for exponential stability in Lecture 11, p.2). In fact, the linearization of the closed-loop system proves the lack of exponential stability:

$$\left[egin{array}{cc} 0 & 0 \ 0 & -k_2 \end{array}
ight]
ight.
ightarrow \lambda_{1,2} = 0, -k_2.$$

Design Example

F

Design example: Active suspension

$$M_b \ddot{x}_s = -k_a (x_s - x_a) - c_a (\dot{x}_s - \dot{x}_a)$$

 $\dot{x}_a = \frac{1}{A}Q$ A: effect
low: $\dot{Q} = -c_f Q + k_f u$ u: current

A: effective piston surface

u: current applied to the solenoid valve (control input)

 Krstić et al., Nonlinear and Adaptive Control Design, Section 2.2.2.

Design Example (cont.)

Define state variables: $x_1 = x_s$, $x_2 = \dot{x}_s$, $x_3 = x_a$, $x_4 = Q$:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{k_a}{M_b}(x_1 - x_3) - \frac{c_a}{M_b}(x_2 - \frac{1}{A}x_4)$$

$$\dot{x}_3 = \frac{1}{A}x_4$$

$$\dot{x}_4 = -c_f x_4 + k_f u.$$

This system is not in strict feedback form due to the x_4 term in \dot{x}_2 . To overcome this problem define:

$$\bar{x}_3 \triangleq \frac{k_a}{M_b} x_3 + \frac{c_a}{M_b A} x_4$$
$$\xi \triangleq x_3$$

car body

$$M_b \ddot{x}_s = -k_a (x_s - x_a) \ - c_a (\dot{x}_s - \dot{x}_a)$$

 $\dot{x}_a = rac{1}{A} Q$
Flow: $\dot{Q} = -c_f Q + k_f u$

 x_a

xc

Lecture 14 Notes - ME6402, Spring 2025

Design Example (cont.)

Change variables to $(x_1, x_2, \bar{x}_3, \xi)$:

$$\begin{split} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -\frac{k_a}{M_b} x_1 - \frac{c_a}{M_b} x_2 + \bar{x}_3 \\ \dot{\bar{x}}_3 &= \frac{k_a - c_a c_f}{M_b A} x_4 + \frac{c_a k_f}{M_b A} u. \end{split}$$

Two steps of backstepping starting with the virtual control law:

$$\alpha_1(x_1) = -c_1 x_1 - k_1 x_1^3$$

will stabilize the (x_1, x_2, \bar{x}_3) subsystem.

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -\frac{k_a}{M_b} (x_1 - x_3) - \frac{c_a}{M_b} (x_2 - \frac{1}{A} x_4) \\ \dot{x}_3 &= \frac{1}{A} x_4 \\ \dot{x}_4 &= -c_f x_4 + k_f u. \\ \bar{x}_3 &\triangleq \frac{k_a}{M_b} x_3 + \frac{c_a}{M_b A} x_4 \\ \xi &\triangleq x_3 \end{aligned}$$

The stiff nonlinearity k₁x₁³ prevents large excursions of x₁.

Design Example (cont.)

Full $(x_1, x_2, \overline{x}_3, \xi)$ system:

The ξ -subsystem is an asymptotically stable linear system driven by \bar{x}_3 ; therefore the full system is stabilized.