Lecture 13 – ME6402, Spring 2025 *Time-Varying Systems and Lyapunov Design*

Maegan Tucker

February 18, 2025

Goals of Lecture 13

- Linear Time-Varying Systems
- Differential Lyapunov
 Equation
- Lyapunov Design
 Examples
- Additional Reading
 - Khalil Chapter 4.6

These slides are derived from notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Time-Varying Systems

$$\dot{x} = A(t)x \qquad x(t) = \Phi(t, t_0)x(t_0)$$

• The state transition matrix $\Phi(t,t_0)$ satisfies the equations:

$$\frac{\partial}{\partial t} \Phi(t, t_0) = A(t) \Phi(t, t_0)$$
$$\frac{\partial}{\partial t_0} \Phi(t, t_0) = -\Phi(t, t_0) A(t_0)$$

 Khalil Section 4.6, Sastry Section 5.7

No eigenvalue test for stability in the time-varying case:

$$A(t) = \begin{bmatrix} -1+1.5\cos^2 t & 1-1.5\sin t\cos t \\ -1-1.5\sin t\cos t & -1+1.5\sin^2 t \end{bmatrix}$$
eigenvalues: $-0.25 \pm i0.25\sqrt{7}$ for all t, but unstable:
 $\Phi(t,0) = \begin{bmatrix} e^{0.5t}\cos t & e^{-t}\sin t \\ e^{-0.5t}\sin t & e^{-t}\cos t \end{bmatrix}$

 Khalil Section 4.6, Sastry Section 5.7

 For linear systems uniform asymptotic stability is equivalent to uniform exponential stability: <u>Theorem</u>: x = 0 is uniformly asymptotically stable if and only if

$$\|\Phi(t,t_0)\| \le ke^{-\lambda(t-t_0)}$$
 for some $k > 0, \ \lambda > 0.$

► Last lecture: $V(t,x) = x^T P(t)x$ proves uniform exp. stability if

(i)
$$\dot{P}(t) + A^T(t)P(t) + P(t)A(t) = -Q(t)$$

(ii) $0 < k_1 I \le P(t) \le k_2 I$
(iii) $0 < k_3 I \le Q(t)$ for all t .

 Khalil Thm. 4.11, Sastry Thm. 5.33

The converse is also true:

<u>Theorem</u>: Suppose x = 0 is uniformly exponentially stable, A(t) is continuous and bounded, Q(t) is continuous and symmetric,

and there exist $k_3, k_4 > 0$ such that

 $0 < k_3 I \le Q(t) \le k_4 I$ for all t.

Then, there exists a symmetric P(t) satisfying (i)–(ii):

(i) $\dot{P}(t) + A^{T}(t)P(t) + P(t)A(t) = -Q(t)$

(ii) $0 < k_1 I \le P(t) \le k_2 I$

- For stable linear systems, there always exists quadratic Lyapunov functions.
- Find them by choosing any positive definite Q(t) and solve (differential) Lyapunov equation.

Lecture 13 Notes - ME6402, Spring 2025

Proof: Time-invariant: $P = \int_0^\infty e^{A^T \tau} Q e^{A \tau} d\tau$ Time-varying: $P(t) = \int_{t}^{\infty} \Phi^{T}(\tau, t)Q(\tau)\Phi(\tau, t)d\tau$ Using the Leibniz rule, property (2), and $\Phi(t,t) = I$ we obtain: $\dot{P}(t) = \int_{t}^{\infty} \left(\frac{\partial}{\partial t} \Phi^{T}(\tau, t) Q(\tau) \Phi(\tau, t) + \Phi^{T}(\tau, t) Q(\tau) \frac{\partial}{\partial t} \Phi(\tau, t) \right) d\tau$ $-\Phi^{T}(t,t)O(t)\Phi(t,t)$ $=\int^{\infty}\left(-A^{T}(t)\Phi^{T}(au,t)Q(au)\Phi(au,t)-\Phi^{T}(au,t)Q(au)\Phi(au,t)A(t)
ight)d au$ $-\Phi^{T}(t,t)O(t)\Phi(t,t)$ $= -A^{T}(t)P(t) - P(t)A(t) - O(t).$

Lecture 13 Notes - ME6402, Spring 2025

- Adaptive Control (this lecture)
- Backstepping (next lecture)
- Control Lyapunov Functions (later)

Adaptive Control with an Unknown Parameter

Consider

$$\dot{y} = a^* y + u.$$

<u>Goal</u>: Stabilize the origin even when a^* is unknown.

- Can this be achieved with linear feedback, u = -Ky for some K?
- Can this be achieved with static nonlinear feedback, u = k(y)?

Adaptive Control with an Unknown Parameter

Consider

$$\dot{y} = a^* y + u.$$

<u>Goal</u>: Stabilize the origin even when a^* is unknown.

Can this be achieved with linear feedback, u = -Ky for some K?

A: Not unless an a priori bound on $|a^*|$ is known.

 Can this be achieved with static nonlinear feedback, *u* = *k*(*y*)?
 A: Try *u* = −*ky*³, *k* > 0. If *a** > 0, this introduces two new, stable equilibria at ±√*a**/*k*. Trajectories, therefore remain bounded, but still no stability at origin.

Adaptive Control with an Unknown Parameter, Dynamic Feedback

Let's try building a dynamic feedback controller.

- Dynamic means the controller itself has a state variable, and therefore memory.
- Let the controller estimate a with \hat{a} .
- <u>Goal</u>: Design update law for \dot{a} and controller $u(y, \hat{a})$ to stabilize origin.
 - Our approach is Lyapunov-based: we choose a Lyapunov function candidate and work to make it an actual Lyapunov function

System:

 $\dot{y} = a^* y + u,$

a^{*} unknown.

Adaptive Control with an Unknown Parameter, Dynamic Feedback (cont.)

$$\dot{y} = a^* y + u(y, \hat{a}), \qquad \dot{a} = ??$$

State variables are y, \hat{a} . Try

$$V(y,\hat{a}) = \frac{1}{2}y^2 + \frac{1}{2}(\hat{a} - a^*)^2$$

$$\dot{y} = a^* y + u(y, \hat{a}), \qquad \dot{a} = ??$$

State variables are y, \hat{a} . Try

$$V(y,\hat{a}) = \frac{1}{2}y^{2} + \frac{1}{2}(\hat{a} - a^{*})^{2}$$

$$\implies \dot{V} = y\dot{y} + (\hat{a} - a^{*})\dot{a} = y(a^{*}y + u) + (\hat{a} - a^{*})\dot{a}$$

$$= a^{*}(y^{2} - \dot{a}) + uy + \hat{a}\dot{a}$$

▶ Want $\dot{V} \leq -y^2$ (for example) so that $y \rightarrow 0$ by LaSalle

- *u* and \dot{a} can be functions of \hat{a} and *y*, but **not** a^*
- ► Therefore, we choose $\dot{a} = y^2$ and then $\dot{V} = uy + \hat{a}y^2$. Choose

$$u(y,\hat{a}) = -\hat{a}y - y$$

Lecture 13 Notes - ME6402, Spring 2025

Adaptive Control with an Unknown Parameter, Dynamic Feedback (cont.)

Final controlled system:

$$\dot{y} = a^* y + u(y, \hat{a}) = (a^* - \hat{a} - 1)y$$

 $\dot{a} = y^2$

Lyapunov function $V(y, \hat{a}) = \frac{1}{2}y^2 + \frac{1}{2}(\hat{a} - a^*)^2$ gives $\dot{V} = -y^2$. Apply LaSalle.

- ▶ Does $y \rightarrow 0$?
- ▶ Does $\hat{a} \rightarrow a^*$?

Adaptive Control with an Unknown Parameter, Dynamic Feedback (cont.)

Final controlled system:

$$\dot{y} = a^* y + u(y, \hat{a}) = (a^* - \hat{a} - 1)y$$

 $\dot{\hat{a}} = y^2$

Lyapunov function $V(y, \hat{a}) = \frac{1}{2}y^2 + \frac{1}{2}(\hat{a} - a^*)^2$ gives $\dot{V} = -y^2$. Apply LaSalle.

- ▶ Does *y* → 0?
 A: Yes
- ▶ Does $\hat{a} \rightarrow a^*$?

A: Not necessarily. For example, $(0, \hat{a})$ is an equilibrium for any \hat{a} . We achieve asymptotic stability of system, but not necessarily estimator convergence

Model Reference Adaptive Control

Illustrated on same first order system:

 $\dot{y} = a^* y + u$

where a^* is unknown.

Reference model:

 $\dot{y}_m = -ay_m + r(t)$ a > 0, r(t) : reference signal.

<u>Goal</u>: Design a controller that guarantees $y(t) - y_m(t) \rightarrow 0$ without the knowledge of a^* .

Model Reference Adaptive Control (cont.)

If we knew a^* , we would choose:

$$u = -\underbrace{(a^* + a)}_{=:k^*} y + r(t) \quad \Rightarrow \quad \dot{y} = -ay + r(t).$$

The tracking error $e(t) := y(t) - y_m(t)$ then satisfies:

$$\dot{e} = -ae \Rightarrow e(t) \rightarrow 0$$
 exponentially.

Adaptive design when a^* (therefore, k^*) is unknown:

$$u = -k(t)y + r(t)$$

where $\dot{k}(t)$ is to be designed. Then:

$$\dot{e} = \dot{y} - \dot{y}_m = a^* y - k(t)y + ay_m = -ae - \underbrace{(k(t) - k^*)y}_{=:\tilde{k}(t)}$$

where adding and subtracting ay gives the final equality.

$$\dot{y} = a^* y + u$$
$$\dot{y}_m = -ay_m + r(t) \ a > 0,$$

r(t) : reference signal.

Model Reference Adaptive Control (cont.)

Use the Lyapunov function: $V = \frac{1}{2}e^2 + \frac{1}{2}\tilde{k}^2$: $\dot{V} = -ae^2 - \tilde{k}ev + \tilde{k}\dot{\tilde{k}}$ $= -ae^2 + \tilde{k}(\dot{\tilde{k}} - ev).$ Note $\dot{\tilde{k}} = \dot{k}$ and choose $\dot{k} = ev$ so that $\dot{V} = -ae^2$. This guarantees stability of $(e,\tilde{k})=(0,0)$ and boundedness of $(e(t), \tilde{k}(t))$ since the level sets of $V = \frac{1}{2}e^2 + \frac{1}{2}\tilde{k}^2$ are positively invariant. In addition, if r(t) is bounded, then $y_m(t)$ in (15) is bounded, and so is $y(t) = y_m(t) + e(t)$.

$$\dot{y}_m = -ay_m + r(t) \ a > 0,$$

r(t) : reference signal.

Model Reference Adaptive Control (cont.)

Then we can apply the Theorem from Lecture 12, page 5, to the time-varying model

$$\dot{e} = -ae - y(t)\tilde{k}, \quad \dot{\tilde{k}} = y(t)e,$$

and conclude from $\dot{V} = -ae^2$ that $e(t) \rightarrow 0$.

Whether $\tilde{k}(t) \to 0$ $(k(t) \to k^*)$ depends on further properties of the reference signal $r(\cdot)$ that are beyond the scope of this lecture.

 $\dot{y}_m = -ay_m + r(t) \ a > 0,$

r(t) : reference signal.