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Time-Varying Systems

» Khalil Section 4.6,
x=A(t)x x(t) = ®(t,19)x(to) Sastry Section 5.7

» The state transition matrix ®(z,1y) satisfies the equations:

id)(t, 1) = A()P(1,1)

5 D(t,19) = —D(t,10)A(10)
fo
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Linear Time-Varying Systems (cont.)

> No eigenvalue test for stability in the time-varying case:
2 . Sastry Section 5.7
[ —1+4+1.5cos“t 1—1.5sintcost ]

A(t): . )
—1—1.5sintcost —1+1.5sin“¢

eigenvalues: —0.25 7i0.25+/7 for all 7, but unstable:

Acost e sint ]

d(1,0) =
(£,0) [e‘O'S’sint e 'cost

Lecture 13 Notes — ME6402, Spring 2025

» Khalil Section 4.6,

3/15



Linear Time-Varying Systems (cont.)

» Khalil Thm. 4.11, Sastry

» For linear systems uniform asymptotic stability is
Thm. 5.33

equivalent to uniform exponential stability:
Theorem: x =0 is uniformly asymptotically stable if and
only if

1D (1,10)|| < ke *07) for some k>0, A > 0.

> Last lecture: V(t,x) =x P(¢)x proves uniform exp.
stability if
() P()+AT(OP() + P(DA() = —0(1)
(i) 0<kI<P(t) <kl
(iii) 0 <kl <Q(r) for all 1.
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Linear Time-Varying Systems (cont.)

The converse is also true:
Theorem: Suppose x = 0 is uniformly exponentially stable, A(z)
is continuous and bounded, Q(¢) is continuous and symmetric,
and there exist k3,k4 > 0 such that
0 <kl <Q(t) < kgl forallz.

Then, there exists a symmetric P(t) satisfying (i)—(ii):

(i) P(r) +AT ()P (1) + P(1)A(r) = —O(1)

(i) 0 < kil < P(t) <kl

> For stable linear systems, there always exists quadratic
Lyapunov functions.

» Find them by choosing any positive definite Q(¢) and solve
(differential) Lyapunov equation.
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Linear Time-Varying Systems (cont.)

Proof:

Time-invariant: P:/ A T0MdT
0

Time-varying: P(¢) :/ &7 (1,1)0(7)®(7,1)dT
t
Using the Leibniz rule, property (2), and ®(¢,¢) =1 we obtain:

P(t)= /tm (§t¢T(T7t)Q(r)®(T, 1) +<I>T(1:,t)Q(r)aatq>(1:,t)> dt
— @1 (1,0)0(1)®(1,1)
= / T (AT ()0 (1.)0(2)D (1, 1) — B (7.0)0(7)D(7,)A(1)) d

— @1 (1,0)0(1)®(1,1)
= —AT(1)P(t) — P(DA(r) — O(¢).
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Lyapunov-based Feedback Design Examples

» Adaptive Control (this lecture)
» Backstepping (next lecture)

» Control Lyapunov Functions (later)
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Adaptive Control with an Unknown Parameter

Consider
y=dy+u.
Goal: Stabilize the origin even when a* is unknown.

» Can this be achieved with linear feedback, u = —Ky for
some K?

» Can this be achieved with static nonlinear feedback,
u=k(y)?
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Adaptive Control with an Unknown Parameter

Consider
y=dy+u.
Goal: Stabilize the origin even when a* is unknown.
» Can this be achieved with linear feedback, u = —Ky for
some K?
A: Not unless an a priori bound on |a*| is known.
» Can this be achieved with static nonlinear feedback,
u=k(y)?
A: Try u=—ky>, k> 0. If a* >0, this introduces two new,
stable equilibria at jq/cT/k. Trajectories, therefore remain
bounded, but still no stability at origin.
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Adaptive Control with an Unknown Parameter, Dynamic Feedback

Let's try building a dynamic feedback controller. > System:

» Dynamic means the controller itself has a state variable, y=a*y+u,

and therefore memory. .
a” unknown.

» Let the controller estimate a with a.

Goal: Design update law for a and controller u(y,a) to stabilize

origin.
» Our approach is Lyapunov-based: we choose a Lyapunov
function candidate and work to make it an actual
Lyapunov function
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Adaptive Control with an Unknown Parameter, Dynamic Feedback (cont.)

y=dy+u(y,a), a="

State variables are y, a. Try
1 1
V(y,a)= 5)’2 + 5(5’ —a*)?
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Adaptive Control with an Unknown Parameter, Dynamic Feedback (cont.)

y=dy+u(y,a), a="

State variables are y, a. Try
1 1
V(y,a)= 5)’2 + 5(5’ —a*)?
= V=yy+(a—a")a=y(a*y+u)+(a—a")
=a*(y* — &) +uy+aa
» Want V < —y? (for example) so that y — 0 by LaSalle

-

» u and & can be functions of @ and y, but not a*

» Therefore, we choose & = y* and then V = uy +ay?.
Choose

u(y,a) = —ay—y
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Adaptive Control with an Unknown Parameter, Dynamic Feedback (cont.)

Final controlled system:

y=ay+u(y,a)=(a"—a—1)y
bd=y>

1 1 .
Lyapunov function V(y,a) = Eyz + 5(& —a*)2 gives V = —2.
Apply LaSalle.

» Does y — 07

» Does ad —a*?

Lecture 13 Notes — ME6402, Spring 2025 11/15



Adaptive Control with an Unknown Parameter, Dynamic Feedback (cont.)

Final controlled system:

y=d'y+u(y,a)=(a"—a—1)y
b=y

1 1 .
Lyapunov function V(y,a) = =y* 4 =(a —a*)? gives V = —y*.

2 2
Apply LaSalle.
» Does y — 07
A: Yes
» Does d — a*?
A: Not necessarily. For example, (0,a) is an equilibrium for
any a. We achieve asymptotic stability of system, but not

necessarily estimator convergence
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Model Reference Adaptive Control

[llustrated on same first order system:
y=a'y+u
where a* is unknown.
Reference model:
Ym=—aym+r(t) a>0, r(t): reference signal.
Goal: Design a controller that guarantees y(7) — y;, () — 0 with-
out the knowledge of a*.
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Model Reference Adaptive Control (cont.)

If we knew a*, we would choose:

u=—(@+ay+r(t) = y=—ay+r(t).
~—

N

=:k*

The tracking error ‘e(t) = y(1) —ym(t)‘ then satisfies:

¢=—ae = e(t) — 0 exponentially.
Adaptive design when a* (therefore, k*) is unknown:
u=—k(t)y+r(t)
where k(1) is to be designed. Then:

e=y—ym=a'y—k(t)y+ay, = —ae— (k(t) —k*)y
—
=:k(1)

where adding and subtracting ay gives the final equality.

Lecture 13 Notes — ME6402, Spring 2025

y=a‘y+u

Im = —aym +r1(t) a>0,

r(z) : reference signal.
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Model Reference Adaptive Control (cont.)

1 1-
Use the Lyapunov function: V = Ee2 + 5k2: >

V= —ae® —key+Fkk Im = —aym+1(t) a>0,

= —ae* +k(k—ey).
Note k = k and choose so that V = —ae?. r(t) : reference signal.
This guarantees stability of (e,k) = (0,0) and boundedness of
(e(t),k(t)) since the level sets of V = Eez—i- 1;}2 are positively
invariant. In addition, if r(¢) is bounded, then y,(z) in (15) is
bounded, and so is y(t) = y,(t) + e(?).
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Model Reference Adaptive Control (cont.)

Then we can apply the Theorem from Lecture 12, page 5, to the >

time-varying model . S = —aym+7(6) @ >0,
e=—ae—y()k, k=y(t)e,

and conclude from V = —ae? that e(t) — 0. r(z) : reference signal.

Whether k(¢) — 0 (k(t) — k*) depends on further properties of

the reference signal r(-) that are beyond the scope of this lec-

ture.
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