
Lecture 13 – ME6402, Spring 2025
Time-Varying Systems and Lyapunov Design

Maegan Tucker

February 18, 2025

Goals of Lecture 13

▶ Linear Time-Varying
Systems

▶ Differential Lyapunov
Equation

▶ Lyapunov Design
Examples

Additional Reading

▶ Khalil Chapter 4.6

These slides are derived from notes created
by Murat Arcak and licensed under a Cre-
ative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


Time-Varying Systems

ẋ = A(t)x x(t) = Φ(t, t0)x(t0)

▶ The state transition matrix Φ(t, t0) satisfies the equations:
∂

∂ t
Φ(t, t0) = A(t)Φ(t, t0)

∂

∂ t0
Φ(t, t0) = −Φ(t, t0)A(t0)
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▶ Khalil Section 4.6,
Sastry Section 5.7



Linear Time-Varying Systems (cont.)

▶ No eigenvalue test for stability in the time-varying case:

A(t) =

[
−1+1.5cos2 t 1−1.5sin t cos t

−1−1.5sin t cos t −1+1.5sin2 t

]
eigenvalues: −0.25∓ i0.25

√
7 for all t, but unstable:

Φ(t,0) =

[
e0.5t cos t e−t sin t

e−0.5t sin t e−t cos t

]
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▶ Khalil Section 4.6,
Sastry Section 5.7



Linear Time-Varying Systems (cont.)

▶ For linear systems uniform asymptotic stability is
equivalent to uniform exponential stability:
Theorem: x = 0 is uniformly asymptotically stable if and
only if

∥Φ(t, t0)∥ ≤ ke−λ (t−t0) for some k > 0, λ > 0.

▶ Last lecture: V(t,x) = xTP(t)x proves uniform exp.
stability if

(i) Ṗ(t)+AT(t)P(t)+P(t)A(t) =−Q(t)
(ii) 0 < k1I ≤ P(t)≤ k2I
(iii) 0 < k3I ≤ Q(t) for all t.
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▶ Khalil Thm. 4.11, Sastry
Thm. 5.33



Linear Time-Varying Systems (cont.)

The converse is also true:
Theorem: Suppose x = 0 is uniformly exponentially stable, A(t)
is continuous and bounded, Q(t) is continuous and symmetric,
and there exist k3,k4 > 0 such that

0 < k3I ≤ Q(t)≤ k4I for all t.

Then, there exists a symmetric P(t) satisfying (i)–(ii):

(i) Ṗ(t)+AT(t)P(t)+P(t)A(t) =−Q(t)

(ii) 0 < k1I ≤ P(t)≤ k2I

▶ For stable linear systems, there always exists quadratic
Lyapunov functions.

▶ Find them by choosing any positive definite Q(t) and solve
(differential) Lyapunov equation.
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Linear Time-Varying Systems (cont.)

Proof:

Time-invariant: P =
∫

∞

0
eAT τQeAτdτ

Time-varying: P(t) =
∫

∞

t
Φ

T(τ, t)Q(τ)Φ(τ, t)dτ

Using the Leibniz rule, property (2), and Φ(t, t) = I we obtain:

Ṗ(t) =
∫

∞

t

(
∂

∂ t
Φ

T(τ, t)Q(τ)Φ(τ, t)+Φ
T(τ, t)Q(τ)

∂

∂ t
Φ(τ, t)

)
dτ

−Φ
T(t, t)Q(t)Φ(t, t)

=
∫

∞

t

(
−AT(t)ΦT(τ, t)Q(τ)Φ(τ, t)−Φ

T(τ, t)Q(τ)Φ(τ, t)A(t)
)

dτ

−Φ
T(t, t)Q(t)Φ(t, t)

=−AT(t)P(t)−P(t)A(t)−Q(t).
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Lyapunov-based Feedback Design Examples

▶ Adaptive Control (this lecture)

▶ Backstepping (next lecture)

▶ Control Lyapunov Functions (later)
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Adaptive Control with an Unknown Parameter

Consider

ẏ = a∗y+u.

Goal: Stabilize the origin even when a∗ is unknown.

▶ Can this be achieved with linear feedback, u =−Ky for
some K?

A: Not unless an a priori bound on |a∗| is known.

▶ Can this be achieved with static nonlinear feedback,
u = k(y)?

A: Try u =−ky3, k > 0. If a∗ > 0, this introduces two new,
stable equilibria at ±

√
a∗/k. Trajectories, therefore remain

bounded, but still no stability at origin.
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Adaptive Control with an Unknown Parameter, Dynamic Feedback

Let’s try building a dynamic feedback controller.

▶ Dynamic means the controller itself has a state variable,
and therefore memory.

▶ Let the controller estimate a with â.

Goal: Design update law for ȧ and controller u(y, â) to stabilize
origin.

▶ Our approach is Lyapunov-based: we choose a Lyapunov
function candidate and work to make it an actual
Lyapunov function
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▶ System:

ẏ = a∗y+u,

a∗ unknown.



Adaptive Control with an Unknown Parameter, Dynamic Feedback (cont.)

ẏ = a∗y+u(y, â), ˙̂a =??

State variables are y, â. Try

V(y, â) =
1
2

y2 +
1
2
(â−a∗)2

=⇒ V̇ = yẏ+(â−a∗) ˙̂a = y(a∗y+u)+(â−a∗) ˙̂a

= a∗(y2 − ˙̂a)+uy+ â ˙̂a
▶ Want V̇ ≤−y2 (for example) so that y → 0 by LaSalle

▶ u and ˙̂a can be functions of â and y, but not a∗

▶ Therefore, we choose ˙̂a = y2 and then V̇ = uy+ ây2.
Choose

u(y, â) =−ây− y
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Adaptive Control with an Unknown Parameter, Dynamic Feedback (cont.)

Final controlled system:

ẏ = a∗y+u(y, â) = (a∗− â−1)y
˙̂a = y2

Lyapunov function V(y, â) =
1
2

y2 +
1
2
(â− a∗)2 gives V̇ = −y2.

Apply LaSalle.

▶ Does y → 0?

A: Yes

▶ Does â → a∗?

A: Not necessarily. For example, (0, â) is an equilibrium for
any â. We achieve asymptotic stability of system, but not
necessarily estimator convergence
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Model Reference Adaptive Control

Illustrated on same first order system:

ẏ = a∗y+u

where a∗ is unknown.
Reference model:

ẏm =−aym + r(t) a > 0, r(t) : reference signal.

Goal: Design a controller that guarantees y(t)− ym(t)→ 0 with-
out the knowledge of a∗.
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Model Reference Adaptive Control (cont.)

If we knew a∗, we would choose:

u =−(a∗+a)︸ ︷︷ ︸
=:k∗

y+ r(t) ⇒ ẏ =−ay+ r(t).

The tracking error e(t) := y(t)− ym(t) then satisfies:

ė =−ae ⇒ e(t)→ 0 exponentially.

Adaptive design when a∗ (therefore, k∗) is unknown:

u =−k(t)y+ r(t)

where k̇(t) is to be designed. Then:

ė = ẏ− ẏm = a∗y− k(t)y+aym =−ae− (k(t)− k∗)︸ ︷︷ ︸
=: k̃(t)

y

where adding and subtracting ay gives the final equality.
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▶

ẏ = a∗y+u

ẏm =−aym + r(t) a > 0,

r(t) : reference signal.



Model Reference Adaptive Control (cont.)

Use the Lyapunov function: V =
1
2

e2 +
1
2

k̃2:

V̇ =−ae2 − k̃ey+ k̃ ˙̃k

=−ae2 + k̃( ˙̃k− ey).

Note ˙̃k = k̇ and choose k̇ = ey so that V̇ =−ae2.
This guarantees stability of (e, k̃) = (0,0) and boundedness of

(e(t), k̃(t)) since the level sets of V =
1
2

e2 +
1
2

k̃2 are positively

invariant. In addition, if r(t) is bounded, then ym(t) in (15) is
bounded, and so is y(t) = ym(t)+ e(t).
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▶

ẏm =−aym + r(t) a > 0,

r(t) : reference signal.



Model Reference Adaptive Control (cont.)

Then we can apply the Theorem from Lecture 12, page 5, to the
time-varying model

ė =−ae− y(t)k̃, ˙̃k = y(t)e,

and conclude from V̇ =−ae2 that e(t)→ 0.
Whether k̃(t)→ 0 (k(t)→ k∗) depends on further properties of
the reference signal r(·) that are beyond the scope of this lec-
ture.
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▶

ẏm =−aym + r(t) a > 0,

r(t) : reference signal.


