Lecture 13 – ME6402, Spring 2025 Time-Varying Systems and Lyapunov Design

Maegan Tucker

February 18, 2025

Goals of Lecture 13

- ▶ Linear Time-Varying Systems
- Differential Lyapunov Equation
- ▶ Lyapunov Design Examples
- Additional Reading
	- Khalil Chapter 4.6

These slides are derived from notes created by Murat Arcak and licensed under a [Cre](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ative Commons Attribution-NonCommercial-](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ShareAlike 4.0 International License.](http://creativecommons.org/licenses/by-nc-sa/4.0/)

$$
\dot{x} = A(t)x \qquad x(t) = \Phi(t, t_0)x(t_0)
$$

 \blacktriangleright The state transition matrix $\Phi(t,t_0)$ satisfies the equations:

$$
\frac{\partial}{\partial t}\Phi(t,t_0) = A(t)\Phi(t,t_0)
$$

$$
\frac{\partial}{\partial t_0}\Phi(t,t_0) = -\Phi(t,t_0)A(t_0)
$$

▶ Khalil Section 4.6, Sastry Section 5.7

► No eigenvalue test for stability in the time-varying case:
\n
$$
A(t) = \begin{bmatrix} -1 + 1.5 \cos^2 t & 1 - 1.5 \sin t \cos t \\ -1 - 1.5 \sin t \cos t & -1 + 1.5 \sin^2 t \end{bmatrix}
$$
\neigenvalues: -0.25≠i0.25√7 for all *t*, but unstable:
\n
$$
\Phi(t,0) = \begin{bmatrix} e^{0.5t} \cos t & e^{-t} \sin t \\ e^{-0.5t} \sin t & e^{-t} \cos t \end{bmatrix}
$$

▶ Khalil Section 4.6, Sastry Section 5.7

▶ For linear systems uniform asymptotic stability is equivalent to uniform exponential stability: Theorem: $x = 0$ is uniformly asymptotically stable if and only if

$$
\|\Phi(t,t_0)\| \leq k e^{-\lambda(t-t_0)} \quad \text{for some} \quad k > 0, \ \lambda > 0.
$$

▶ Last lecture: $V(t, x) = x^T P(t)x$ proves uniform exp. stability if

(i)
$$
\dot{P}(t) + A^T(t)P(t) + P(t)A(t) = -Q(t)
$$

\n(ii) $0 < k_1 I \le P(t) \le k_2 I$
\n(iii) $0 < k_3 I \le Q(t)$ for all *t*.

▶ Khalil Thm. 4.11, Sastry Thm. 5.33

The converse is also true:

Theorem: Suppose $x = 0$ is uniformly exponentially stable, $A(t)$ is continuous and bounded, $Q(t)$ is continuous and symmetric, and there exist $k_3, k_4 > 0$ such that

 $0 < k₃I < O(t) < k_AI$ for all *t*.

Then, there exists a symmetric $P(t)$ satisfying (i)–(ii):

 $P(t) + A^T(t)P(t) + P(t)A(t) = -Q(t)$

(ii) $0 < k_1 I < P(t) < k_2 I$

- \blacktriangleright For stable linear systems, there always exists quadratic Lyapunov functions.
- \blacktriangleright Find them by choosing any positive definite $Q(t)$ and solve (differential) Lyapunov equation.

[Lecture 13 Notes – ME6402, Spring 2025](#page-0-0) 5/15

Proof: $\overline{\mathsf{Time}}$ -invariant: $P = \int_{0}^{\infty}$ $\boldsymbol{0}$ $e^{A^T \tau} Qe^{A \tau} d\tau$ Time-varying: $P(t) = \int_{0}^{\infty} \Phi^{T}(\tau, t) Q(\tau) \Phi(\tau, t) d\tau$ Using the Leibniz rule, property [\(2\)](#page-1-0), and $\Phi(t,t) = I$ we obtain: $\dot{P}(t) = \int_t^{\infty}$ ∂ $\frac{\partial}{\partial t}\Phi^T(\tau,t)Q(\tau)\Phi(\tau,t)+\Phi^T(\tau,t)Q(\tau)\frac{\partial}{\partial t}$ $\frac{\partial}{\partial t}$ Φ(τ, t) $\bigg)$ dτ $-\Phi^T(t,t)Q(t)\Phi(t,t)$ $=$ \int^{∞} *t* $\left(-A^T(t)\Phi^T(\tau,t)Q(\tau)\Phi(\tau,t)-\Phi^T(\tau,t)Q(\tau)\Phi(\tau,t)A(t)\right)dt$ $-\Phi^T(t,t)Q(t)\Phi(t,t)$ $= -A^T(t)P(t) - P(t)A(t) - Q(t).$

- ▶ Adaptive Control (this lecture)
- ▶ Backstepping (next lecture)
- ▶ Control Lyapunov Functions (later)

Adaptive Control with an Unknown Parameter

Consider

$$
\dot{y} = a^*y + u.
$$

 $\frac{Goal}{.}$ Stabilize the origin even when a^* is unknown.

- ▶ Can this be achieved with linear feedback, *u* = −*Ky* for some *K*?
- \triangleright Can this be achieved with static nonlinear feedback, $u = k(y)$?

Adaptive Control with an Unknown Parameter

Consider

$$
\dot{y} = a^*y + u.
$$

 $\frac{Goal}{.}$ Stabilize the origin even when a^* is unknown.

▶ Can this be achieved with linear feedback, *u* = −*Ky* for some *K*?

A: Not unless an a priori bound on $|a^*|$ is known.

 \triangleright Can this be achieved with static nonlinear feedback. $u = k(y)$? A: Try $u = -ky^3$, $k > 0$. If $a^* > 0$, this introduces two new, stable equilibria at $\pm \sqrt{a^*/k}$. Trajectories, therefore remain bounded, but still no stability at origin.

Adaptive Control with an Unknown Parameter, Dynamic Feedback

Let's try building a dynamic feedback controller.

- \triangleright Dynamic means the controller itself has a state variable, and therefore memory.
- \blacktriangleright Let the controller estimate *a* with \hat{a} .
- Goal: Design update law for *a* and controller $u(y, \hat{a})$ to stabilize origin.
	- Our approach is Lyapunov-based: we choose a Lyapunov function candidate and work to make it an actual Lyapunov function

▶ System:

 $\dot{y} = a^*y + u,$

a ∗ unknown.

$$
\dot{y} = a^*y + u(y, \hat{a}), \qquad \dot{\hat{a}} = ??
$$

State variables are *y*, \hat{a} . Try

$$
V(y, \hat{a}) = \frac{1}{2}y^2 + \frac{1}{2}(\hat{a} - a^*)^2
$$

$$
\dot{y} = a^*y + u(y, \hat{a}), \qquad \dot{a} = ??
$$

State variables are *y*, \hat{a} . Try

$$
V(y, \hat{a}) = \frac{1}{2}y^2 + \frac{1}{2}(\hat{a} - a^*)^2
$$

\n
$$
\implies \dot{V} = y\dot{y} + (\hat{a} - a^*)\dot{a} = y(a^*y + u) + (\hat{a} - a^*)\dot{a}
$$

\n
$$
= a^*(y^2 - \dot{a}) + uy + \hat{a}\dot{a}
$$

▶ Want *V*˙ ≤ −*y* 2 (for example) so that *y* → 0 by LaSalle

▶ *u* and \dot{a} can be functions of \hat{a} and *y*, but not a^*

• Therefore, we choose
$$
\hat{a} = y^2
$$
 and then $\dot{V} = uy + \hat{a}y^2$.
Choose

$$
u(y, \hat{a}) = -\hat{a}y - y
$$

[Lecture 13 Notes – ME6402, Spring 2025](#page-0-0) $10/15$

Adaptive Control with an Unknown Parameter, Dynamic Feedback (cont.)

Final controlled system:

$$
\dot{y} = a^* y + u(y, \hat{a}) = (a^* - \hat{a} - 1)y
$$

$$
\dot{a} = y^2
$$

Lyapunov function $V(y,\hat{a}) = \frac{1}{2}y^2 + \frac{1}{2}$ $\frac{1}{2}(\hat{a}-a^*)^2$ gives $\dot{V}=-y^2$. Apply LaSalle.

▶ Does $y \rightarrow 0$?

▶ Does $\hat{a} \rightarrow a^*$?

Adaptive Control with an Unknown Parameter, Dynamic Feedback (cont.)

Final controlled system:

$$
\dot{y} = a^* y + u(y, \hat{a}) = (a^* - \hat{a} - 1)y
$$

$$
\dot{a} = y^2
$$

Lyapunov function $V(y,\hat{a}) = \frac{1}{2}y^2 + \frac{1}{2}$ $\frac{1}{2}(\hat{a}-a^*)^2$ gives $\dot{V}=-y^2$. Apply LaSalle.

- ▶ Does $y \rightarrow 0$? A: Yes
- ▶ Does $\hat{a} \rightarrow a^*$?

A: Not necessarily. For example, $(0, \hat{a})$ is an equilibrium for any \hat{a} . We achieve asymptotic stability of system, but not necessarily estimator convergence

Model Reference Adaptive Control

Illustrated on same first order system:

 $\dot{y} = a^*y + u$

where a^* is unknown.

Reference model:

 $\dot{y}_m = -ay_m + r(t)$ *a* > 0, *r(t)* : reference signal.

Goal: Design a controller that guarantees $y(t) - y_m(t) \rightarrow 0$ without the knowledge of a^* .

Model Reference Adaptive Control (cont.)

If we knew *a* ∗ , we would choose:

$$
u = -(a^* + a)y + r(t) \quad \Rightarrow \quad y = -ay + r(t).
$$

The tracking error $e(t) := y(t) - y_m(t)$ then satisfies:

$$
\dot{e} = -ae \Rightarrow e(t) \rightarrow 0
$$
 exponentially.

Adaptive design when a^* (therefore, k^*) is unknown:

$$
u = -k(t)y + r(t)
$$

where $k(t)$ is to be designed. Then:

$$
\dot{e} = \dot{y} - \dot{y}_m = a^*y - k(t)y + ay_m = -ae - \underbrace{(k(t) - k^*)}_{=: \tilde{k}(t)}y
$$

where adding and subtracting *ay* gives the final equality.

▶

$$
\dot{y} = a^*y + u
$$

$$
\dot{y}_m = -ay_m + r(t) \ a > 0,
$$

 $r(t)$: reference signal.

Model Reference Adaptive Control (cont.)

Use the Lyapunov function: $V = \frac{1}{2}$ $\frac{1}{2}e^2 + \frac{1}{2}$ $\frac{1}{2}\tilde{k}^2$: $\dot{V} = -ae^2 - \tilde{k}ey + \tilde{k}\tilde{k}$ $= -ae^2 + \tilde{k}(\dot{\tilde{k}} - ey).$ Note $\dot{\tilde{k}} = \dot{k}$ and choose $\dot{\tilde{k}} = ey$ so that $\dot{V} = -ae^2$. This guarantees stability of $(e,\tilde{k})=(0,0)$ and boundedness of $(e(t), \tilde{k}(t))$ since the level sets of $V = \frac{1}{2}$ $\frac{1}{2}e^2 + \frac{1}{2}$ $\frac{1}{2}\tilde{k}^2$ are positively invariant. In addition, if $r(t)$ is bounded, then $y_m(t)$ in [\(15\)](#page-14-0) is bounded, and so is $y(t) = y_m(t) + e(t)$.

▶

$$
\dot{y}_m = -ay_m + r(t) \ a > 0,
$$

r(*t*) : reference signal.

Model Reference Adaptive Control (cont.)

Then we can apply the Theorem from Lecture 12, page 5, to the time-varying model

$$
\dot{e} = -ae - y(t)\tilde{k}, \quad \dot{\tilde{k}} = y(t)e,
$$

and conclude from $\dot{V}=-ae^2$ that $e(t)\rightarrow 0.$

Whether $\tilde{k}(t) \rightarrow 0 \,\, (k(t) \rightarrow k^*)$ depends on further properties of the reference signal $r(\cdot)$ that are beyond the scope of this lecture.

▶

 $\dot{y}_m = -a y_m + r(t) \ a > 0,$

 $r(t)$: reference signal.