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Comparison Functions

Definition: A continuous function α : [0,∞)→ [0,∞) is class-K
if it is zero at zero and strictly increasing. It is class-K∞ if, in
addition, α(r)→ ∞ as r → ∞.
A continuous function β : [0,∞)× [0,∞)→ [0,∞) is class-KL if:

1 β (·,s) is class-K for every fixed s,

2 β (r, ·) is decreasing and β (r,s)→ 0 as s → ∞, for every
fixed r.

Example: α(r) = tan−1(r) is class-K, α(r) = rc,c > 0 is class-
K∞, β (r,s) = rce−s is class-KL.
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Comparison Functions

Proposition: If V(·) is positive definite, then we can find class-K
functions α1(·) and α2(·) such that

α1(|x|)≤ V(x)≤ α2(|x|).
If V(·) is radially unbounded, we can choose α1(·) to be class-
K∞.
Example: V(x) = xTPx P = PT > 0

α1(|x|) = λmin(P)|x|2 α2(|x|) = λmax(P)|x|2.
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Stability Definitions

▶ x = 0 is uniformly stable if there exists a class-K function α(·)
and a constant c > 0 such that

|x(t)| ≤ α(|x(t0)|)
for all t ≥ t0 and for every initial condition such that |x(t0)| ≤ c.

▶ uniformly asymptotically stable if there exists a class-KL β (·, ·)
s.t.

|x(t)| ≤ β (|x(t0)|, t− t0)
for all t ≥ t0 and for every initial condition such that |x(t0)| ≤ c.

▶ globally uniformly asymptotically stable if c = ∞.

▶ uniformly exponentially stable if β (r,s) = kre−λ s for some
k,λ > 0:

|x(t)| ≤ k|x(t0)|e−λ (t−t0)

for all t ≥ t0 and for every initial condition such that |x(t0)| ≤ c.
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Stability of Time-Varying Systems

k > 1 allows for overshoot:

nonlinear systems—lecture 12 notes 2

• uniformly asymptotically stable if there exists a class-KL b(·, ·) s.t.

|x(t)|  b(|x(t0)|, t � t0)

for all t � t0 and for every initial condition such that |x(t0)|  c.

• globally uniformly asymptotically stable if c = •.

• uniformly exponentially stable if b(r, s) = kre�ls for some k, l > 0:

|x(t)|  k|x(t0)|e�l(t�t0)

for all t � t0 and for every initial condition such that |x(t0)|  c.

k > 1 allows for overshoot:

tt0

k|x(t0)|e�l(t�t0)
|x(t)|

|x(t0)|

k|x(t0)|

Example: Consider the following system, defined for t > �1:

ẋ =
�x

1 + t
(2)

x(t) = x(t0)e
R t

t0
�1
1+s ds

= x(t0)elog(1+s)|t0t

= x(t0)elog 1+t0
1+t = x(t0)

1 + t0

1 + t
|x(t)|  |x(t0)| =) the origin is uniformly stable with a(r) = r.

The origin is also asymptotically stable, but not uniformly, because
the convergence rate depends on t0:

x(t) = x(t0)
1 + t0

1 + t0 + (t � t0)
=

x(t0)

1 + t�t0
1+t0

.

t � t0

increasing t0

x(t)

Example:

ẋ = �x3 ) x(t) = sgn(x(t0))

s
x2

0
1 + 2(t � t0)x2

0

x = 0 is asymptotically stable but not exponentially stable.

Proposition: x = 0 is exponentially stable for ẋ = f (x), f (0) = 0, if

and only if A , ∂ f
∂x

���
x=0

is Hurwitz, that is <li(A) < 0 8i.

Although strict inequality in <li(A) < 0 is not necessary for asymp-
totic stability (see example above where A = 0), it is necessary for
exponential stability.
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▶
uniformly exponentially stable
if β (r,s) = kre−λ s for
some k,λ > 0:

|x(t)| ≤ k|x(t0)|e−λ (t−t0)

for all t ≥ t0 and for
every initial condition
such that |x(t0)| ≤ c.



Example 1

Example: Consider the following system, defined for t >−1:

ẋ =
−x

1+ t

x(t) = x(t0)e
∫ t

t0
−1
1+s ds

= x(t0)elog(1+s)|t0t

= x(t0)elog 1+t0
1+t = x(t0)

1+ t0
1+ t

|x(t)| ≤ |x(t0)| =⇒ the origin is uniformly stable with α(r) = r.
The origin is also asymptotically stable, but not uniformly, be-
cause the convergence rate depends on t0:

x(t) = x(t0)
1+ t0

1+ t0 +(t− t0)
=

x(t0)
1+ t−t0

1+t0

.
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Example 2

Example:

ẋ =−x3 ⇒ x(t) = sgn(x(t0))

√
x2

0

1+2(t− t0)x2
0

x = 0 is asymptotically stable but not exponentially stable be-
cause 1/

√
t decays more slowly than any exponential.
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Exponential Stability

Proposition: x = 0 is exponentially stable for ẋ = f (x), f (0) = 0,

if and only if A ≜ ∂ f
∂x

∣∣∣∣
x=0

is Hurwitz, that is ℜλi(A)< 0 ∀i.

Although strict inequality in ℜλi(A) < 0 is not necessary for
asymptotic stability (see example above where A = 0), it is nec-
essary for exponential stability.
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Lyapunov’s Stability Theorem for Time-Varying Systems

1 If W1(x)≤ V(t,x)≤ W2(x) and

V̇(t,x)≜ ∂V
∂ t

+
∂V
∂x

f (t,x)≤ 0 for some positive definite

functions W1(·), W2(·) on a domain D that includes the
origin, then x = 0 is uniformly stable.
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Lyapunov’s Stability Theorem for Time-Varying Systems
Khalil, Section 4.5

1. If W1(x)  V(t, x)  W2(x) and V̇(t, x) , ∂V
∂t + ∂V

∂x f (t, x)  0 for
some positive definite functions W1(·), W2(·) on a domain D that
includes the origin, then x = 0 is uniformly stable.

x
W1(x)

W2(x)
V(t1, x)

V(t2, x)

2. If, further, V̇(t, x)  �W3(x) 8x 2 D for some positive definite
W3(·), then x = 0 is uniformly asymptotically stable.

3. If D = Rn and W1(·) is radially unbounded, then x = 0 is globally
uniformly asymptotically stable.

4. If Wi(x) = ki|x|a, i = 1, 2, 3, for some constants k1, k2, k3, a > 0,
then x = 0 is uniformly exponentially stable.

Proof:

1. a1(|x|)  W1(x)  V(t, x)  W2(x)  a2(|x|)
V̇  0 ) V(x(t), t)  V(x(t0), t0)

) a1(|x(t)|)  a2(|x(t0)|)
) |x(t)|  a(|x(t0)|) , (a�1

1 � a2)(|x(t0)|).

Note: The inverse of a class-K function is well defined locally
(globally if K•) and is class-K. The composition of two class-K
functions is also class-K.

2. V̇  �W3(x)  �a3(|x|)  �a3(a�1
2 (V)) , �g(V)

d
dt

V(t, x(t))  �g(V(t, x(t)))

Let y(t) be the solution of ẏ = �g(y), y(t0) = V(t0, x(t0)). Then,

V(t, x(t))  y(t).
y

�g(y)
Since ẏ = �g(y) is a first order differential equation and �g(y) <

0 when y > 0, we conclude monotone convergence of y(t) to 0:

y(t) = b(y(t0), t � t0) =) V(t, x(t))  b(V(t0, x(t0))| {z }
a2(|x(t0)|)

, t � t0)

) a1(|x(t)|)  b(a2(|x(t0)|), t � t0)

) |x(t)|  b̃(|x(t0)|, t � t0) , a�1
1 (b(a2(|x(t0)|), t � t0))

2 If, further, V̇(t,x)≤−W3(x) ∀x ∈ D for some positive
definite W3(·), then x = 0 is uniformly asymptotically
stable.

3 If D = Rn and W1(·) is radially unbounded, then x = 0 is
globally uniformly asymptotically stable.

4 If Wi(x) = ki|x|a, i = 1,2,3, for some constants
k1,k2,k3,a > 0, then x = 0 is uniformly exponentially
stable.
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Since ẏ = �g(y) is a first order differential equation and �g(y) <

0 when y > 0, we conclude monotone convergence of y(t) to 0:

y(t) = b(y(t0), t � t0) =) V(t, x(t))  b(V(t0, x(t0))| {z }
a2(|x(t0)|)

, t � t0)

) a1(|x(t)|)  b(a2(|x(t0)|), t � t0)

) |x(t)|  b̃(|x(t0)|, t � t0) , a�1
1 (b(a2(|x(t0)|), t � t0))



Lyapunov’s Stability Theorem for Time-Varying Systems

Proof:
1 α1(|x|)≤ W1(x)≤ V(t,x)≤ W2(x)≤ α2(|x|)

V̇ ≤ 0 ⇒ V(x(t), t)≤ V(x(t0), t0)

⇒ α1(|x(t)|)≤ α2(|x(t0)|)
⇒ |x(t)| ≤ α(|x(t0)|)≜ (α−1

1 ◦α2)(|x(t0)|).
Note: The inverse of a class-K function is well defined locally
(globally if K∞) and is class-K. The composition of two class-K
functions is also class-K.
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1 If W1(x)≤ V(t,x)≤ W2(x) and

V̇(t,x)≜ ∂V
∂ t

+
∂V
∂x

f (t,x)≤ 0 for some

positive definite functions W1(·), W2(·)
on a domain D that includes the origin,
then x = 0 is uniformly stable.

2 If, further, V̇(t,x)≤−W3(x) ∀x ∈ D for
some positive definite W3(·), then x = 0
is uniformly asymptotically stable.

3 If D = Rn and W1(·) is radially
unbounded, then x = 0 is globally
uniformly asymptotically stable.

4 If Wi(x) = ki|x|a, i = 1,2,3, for some
constants k1,k2,k3,a > 0, then x = 0 is
uniformly exponentially stable.



Lyapunov’s Stability Theorem for Time-Varying Systems

Proof:
2 V̇ ≤−W3(x)≤−α3(|x|)≤−α3(α

−1
2 (V))≜−γ(V)

d
dt

V(t,x(t))≤−γ(V(t,x(t)))

Let y(t) be the solution of ẏ =−γ(y), y(t0) = V(t0,x(t0)). Then,

V(t,x(t))≤ y(t).

Since ẏ =−γ(y) is a first order differential equation and
−γ(y)< 0 when y > 0, we conclude monotone convergence of
y(t) to 0:

y(t) = β (y(t0), t− t0) =⇒ V(t,x(t))≤ β (V(t0,x(t0))︸ ︷︷ ︸
≤α2(|x(t0)|)

, t− t0)

⇒ α1(|x(t)|)≤ β (α2(|x(t0)|), t− t0)

⇒ |x(t)| ≤ β̃ (|x(t0)|, t− t0)

≜ α
−1
1 (β (α2(|x(t0)|), t− t0))
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y

�g(y)
Since ẏ = �g(y) is a first order differential equation and �g(y) <

0 when y > 0, we conclude monotone convergence of y(t) to 0:

y(t) = b(y(t0), t � t0) =) V(t, x(t))  b(V(t0, x(t0))| {z }
a2(|x(t0)|)

, t � t0)

) a1(|x(t)|)  b(a2(|x(t0)|), t � t0)

) |x(t)|  b̃(|x(t0)|, t � t0) , a�1
1 (b(a2(|x(t0)|), t � t0))



Lyapunov’s Stability Theorem for Time-Varying Systems

Proof:
3 If α1(·) is class K∞ then α

−1
1 (·) exists globally above.

4 α3(|x|) = k3|x|a, α2(|x|) = k2|x|a

⇒ γ(V) = α3(α
−1
2 (V)) = k3

((
V
k2

) 1
a
)a

=
k3

k2
V

ẏ =−k3

k2
y ⇒ y(t) = y(t0)e−(k2/k2)(t−t0)

β (r,s)= re−(k3/k2)s ⇒ β̃ (r,s)=
(

k2

k1
rae−(k3/k2)s

) 1
a

=

(
k2

k1

) 1
a

re−
k3a
k2

s
.
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1 If W1(x)≤ V(t,x)≤ W2(x) and

V̇(t,x)≜ ∂V
∂ t

+
∂V
∂x

f (t,x)≤ 0 for some

positive definite functions W1(·), W2(·)
on a domain D that includes the origin,
then x = 0 is uniformly stable.

2 If, further, V̇(t,x)≤−W3(x) ∀x ∈ D for
some positive definite W3(·), then x = 0
is uniformly asymptotically stable.

3 If D = Rn and W1(·) is radially
unbounded, then x = 0 is globally
uniformly asymptotically stable.

4 If Wi(x) = ki|x|a, i = 1,2,3, for some
constants k1,k2,k3,a > 0, then x = 0 is
uniformly exponentially stable.



Example 1

Example:

ẋ =−g(t)x3 where g(t)≥ 1 for all t

V(x) =
1
2

x2 ⇒ V̇(t,x) =−g(t)x4 ≤−x4 ≜ W3(x)
Globally uniformly asymptotically stable but not exponentially
stable. Take g(t)≡ 1 as a special case.
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Example 2

Example: ẋ = A(t)x. Take V(x) = xTP(t)x:

V̇(x) = xT Ṗ(t)x+ ẋTP(t)x+ xTP(t)ẋ

= xT(Ṗ+ATP+PA)︸ ︷︷ ︸
≜−Q(t)

x

If k1I ≤ P(t)≤ k2I and k3I ≤ Q(t), k1,k2,k3 > 0, then

k1|x|2 ≤ V(t,x)≤ k2|x|2 and V̇(t,x)≤−k3|x|2

⇒ global uniform exponential stability.
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A Lasalle-Krasovskii-Type Result

What if W3(·) is only semidefinite?
Lasalle-Krasovskii Invariance Principle is not applicable to time-
varying systems. Instead, use the following (weaker) result:
Theorem: Suppose W1(x)≤ V(t,x)≤ W2(x)

∂V
∂ t

+
∂V
∂x

f (t,x)≤−W3(x),

where W1(·),W2(·) are positive definite and W3(·) is positive
semidefinite. Suppose, further, W1(·) is radially unbounded,
f (t,x) is locally Lipschitz in x and bounded in t, and W3(·) is
C1. Then

W3(x(t))→ 0 as t → ∞.

Note: This proves convergence to S = {x : W3(x) = 0} whereas
the Invariance Principle, when applicable, guarantees conver-
gence to the largest invariant set within S.
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▶ Khalil, Section 8.3



Example 3

Example:

ẋ1 = −x1 +w(t)x2

ẋ2 = −w(t)x1

V(t,x) =
1
2

x2
1 +

1
2

x2
2 ⇒ V̇(t,x) = −x2

1. If w(t) is bounded in

t then the theorem above implies x1(t) → 0 as t → ∞, but no
guarantee about the convergence of x2(t) to zero.
By contrast, if w(t) ≡ w ̸= 0, then we can use the Invariance
Principle and conclude x2(t)→ 0 (show this).
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Barbalat’s Lemma

Barbalat’s Lemma (used in proving the theorem above):

If lim
t→∞

∫ t

0
φ(τ)dτ exists and is finite, and φ(·) is uniformly con-

tinuous then φ(t)→ 0 as t → ∞.
Uniform continuity in Barbalat’s Lemma can’t be relaxed:
Example: Let φ(t) be a sequence of pulses centered at k =

1,2,3, . . . with amplitude = k, width = 1/k3, then
∫

∞

0
φ(t)dt =

∞

∑
k=1

1
k2 < ∞ but φ(t) ̸→ 0.
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▶ Uniformly continuous
means: For every ε > 0
there exists δ > 0 such
that ∀t1, t2 |t1 − t2| ≤
δ ⇒ |φ(t1)−φ(t2)| ≤ ε.
Boundedness of the
derivative φ̇(t) implies
uniform continuity.

nonlinear systems—lecture 12 notes 5

Note: This proves convergence to S = {x : W3(x) = 0} whereas the
Invariance Principle, when applicable, guarantees convergence to the
largest invariant set within S.

Example:

ẋ1 = �x1 + w(t)x2

ẋ2 = �w(t)x1

V(t, x) = 1
2 x2

1 + 1
2 x2

2 ) V̇(t, x) = �x2
1. If w(t) is bounded in t then

the theorem above implies x1(t) ! 0 as t ! •, but no guarantee
about the convergence of x2(t) to zero.

By contrast, if w(t) ⌘ w 6= 0, then we can use the Invariance Principle
and conclude x2(t) ! 0 (show this).

Barbalat’s Lemma (used in proving the theorem above):

If limt!•

Z t

0
f(t)dt exists and is finite, and f(·) is uniformly continu-

ous2 then f(t) ! 0 as t ! •. 2 For every e > 0 there exists d > 0
such that 8t1, t2 |t1 � t2|  d )
|f(t1) � f(t2)|  e. Boundedness of
the derivative ḟ(t) implies uniform
continuity.

Uniform continuity in Barbalat’s Lemma can’t be relaxed:

Example: Let f(t) be a sequence of pulses centered at k = 1, 2, 3, . . .
with amplitude = k, width = 1/k3, then

Z •

0
f(t)dt =

•

Â
k=1

1
k2 < • but f(t) 6! 0.

· · ·
f(t)

t
1 2 3 4

Proof of the theorem:

a1(|x|)  V(t, x)  a2(|x|) a1 2 K•

) |x(t)|  a�1
1 (a2(|x(t0)|))

x(t) bounded ) ẋ(t) = f (t, x(t)) is bounded ) x(t) is uniformly
continuous.

V̇(t, x)  �W3(x(t))

) V(x(T)) � V(x(t0), t0)  �
Z T

t0

W3(x(t))dt

)
Z •

t0

W3(x(t))dt  V(x(t0), t0) < •.

Since W3(·) is C1, it is uniformly continuous on the bounded domain
where x(t) resides. So, by Barbalat’s Lemma, W3(x(t)) ! 0 as t ! •.



A Lasalle-Krasovskii-Type Result: Proof

Proof of the theorem:
α1(|x|)≤ V(t,x)≤ α2(|x|) α1 ∈ K∞

⇒ |x(t)| ≤ α
−1
1 (α2(|x(t0)|))

x(t) bounded ⇒ ẋ(t) = f (t,x(t)) is bounded ⇒ x(t) is uniformly
continuous.

V̇(t,x)≤−W3(x(t))

⇒ V(x(T))−V(x(t0), t0)≤−
∫ T

t0
W3(x(t))dt

⇒
∫

∞

t0
W3(x(t))dt ≤ V(x(t0), t0)< ∞.

Since W3(·) is C1, it is uniformly continuous on the bounded
domain where x(t) resides. So, by Barbalat’s Lemma, W3(x(t))→
0 as t → ∞.
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▶ Theorem: Suppose
W1(x)≤ V(t,x)≤ W2(x)

∂V
∂ t

+
∂V
∂x

f (t,x)≤−W3(x),

where W1(·),W2(·) are
positive definite and
W3(·) is positive
semidefinite. Suppose,
further, W1(·) is radially
unbounded, f (t,x) is
locally Lipschitz in x and
bounded in t, and W3(·)
is C1. Then

W3(x(t))→ 0 as t → ∞.


