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Comparison Functions

Definition: A continuous function o : [0,00) — [0,00) is class-KC
if it is zero at zero and strictly increasing. It is class-XC.. if, in
addition, o(r) — o as r — co.
A continuous function f : [0,00) x [0,c0) — [0,0) is class-KCL if:
® B(-,s) is class-K for every fixed s,
® P(r,-) is decreasing and B(r,s) — 0 as s — oo, for every
fixed r.
Example: o (r) = tan"'(r) is class-KC, a(r) = r,c > 0 is class-
Ko, B(r,s) =r‘e™" is class-KCL.
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Comparison Functions

Proposition: If V(-) is positive definite, then we can find class-KC
functions a;(-) and a,(-) such that

oy (Jxf) < V(x) < aa(fx]).

If V(-) is radially unbounded, we can choose a;(-) to be class-
Ke.

Example:  V(x)=x'Px P=P' >0
o1 (|x]) = Amin (P) x> 02(|x]) = Amax (P)|x]*.
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Stability Definitions

» x =0 is uniformly stable if there exists a class-K function af(-)
and a constant ¢ > 0 such that

()] < ex(|x(to)])
for all >t and for every initial condition such that |x(7)| < c.

» uniformly asymptotically stable if there exists a class-KCL B(-,-)
s.t.

x(6)] < B(|x(t0)],1 —10)

for all > 1o and for every initial condition such that |x(7)| < c.

» globally uniformly asymptotically stable if ¢ = .

» uniformly exponentially stable if B(r,s) = kre=** for some
k,A >0:

Ix(1)] < klx(to) e~
for all > o and for every initial condition such that |x(7)| < c.
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Stability of Time-Varying Systems

k > 1 allows for overshoot:
Kx(to)] )
|x(t)]

K|x(to) e~ 10)

|x(to)]
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uniformly exponentially stable
if B(r,s) = kre ™ for
some k,A > 0:

(1)) < klx(tg) e~

for all > 1y and for
every initial condition
such that |x(z)| < c.
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Example 1

Example: Consider the following system, defined for r > —1: i "
— x(t
. —X increasing to
i=—
141

t—to
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Example 1

Example: Consider the following system, defined for r > —1: i "
— x(t
. —X increasing to
i=—
141

Jiy THsds log(1-+s)[? R
x(t) = x(t9)e’0 = = x(tg)e ‘

B logﬂ_ 141
=Xxl(fy)e I+t = x(f,
(t0) (O)I—H

|x(7)| <|x(top)] = the origin is uniformly stable with a(r) =r.
The origin is also asymptotically stable, but not uniformly, be-

cause the convergence rate depends on #y:

1+1n x(o)
x() = x(10) = rta
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Example 2

Example:
2
X0
14+2(r—19)x3
x = 0 is asymptotically stable but not exponentially stable be-
cause 1/+/t decays more slowly than any exponential.

i=—x = x(r)=sgn(x(rg))
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Exponential Stability

Proposition: x = 0 is exponentially stable for x = f(x), £(0) =0,
d
if and only if A = a—f is Hurwitz, that is RA;(A) < 0 Vi.
X |x=0
Although strict inequality in RA;(A) < 0 is not necessary for

asymptotic stability (see example above where A =0), it is nec-

essary for exponential stability.
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Lyapunov's Stability Theorem for Time-Varying Systems

o If Wi (x) < V(t,x) < Wz(x) and » Khalil, Section 4.5

V(t,x) = %‘t/ + (Zic/f(t,x) < 0 for some positive definite

functions W;(-), Wa(-) on a domain D that includes the
origin, then x = 0 is uniformly stable.
Wz(x)

Vi) V(i %)

Wi (x)
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Lyapunov's Stability Theorem for Time-Varying Systems

o Ifw, (x) < V(t,x) < Wz(x) and » Khalil, Section 4.5
X av a9V )
V(t,x) 2 5 + gf(t,x) < 0 for some positive definite Vit ) Wj/‘;‘;,x)
functions W;(-), Wa(:) on a domain D that includes the
origin, then x = 0 is uniformly stable. W)

@ If, further, V(t,x) < —Wj(x) Vx € D for some positive
definite Wi(-), then x =0 is uniformly asymptotically
stable.

© If D=R" and W;(-) is radially unbounded, then x=10is
globally uniformly asymptotically stable.

O If Wi(x) =ki|x|%, i=1,2,3, for some constants
ki,ky,ks,a >0, then x =0 is uniformly exponentially
stable.
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Lyapunov's Stability Theorem for Time-Varying Systems

PI’OOf: O If W) (x) < V(t,x) < W(x) and
© o ([x]) < Wi(x) < V(1,x) < Wa(x) < aa(Jx]) V(092 2 4 2% (1,0) <0 for some
. positive definite functions W, (-), Wa(-)
Vv S 0 = V(X(I)J) S V(X(IQ)J()) on a domain D that includeslthe orizgin.

then x =0 is uniformly stable.

<
= % (IX(t) |) - aZ(‘X(IO) |) @ |If, further, V(t,x) < —Ws(x) Vx € D for

= ()] < allx()]) 2 (o5 0 ) (x(10)]). s o e W), e 0
. . . . is uniformly asymptotically stable.
Note: The inverse of a class-/C function is well defined locally o
© If D=TR" and W(-) is radially
(globally if ) and is class-XC. The composition of two class-K unbounded, then x =0 is globally

uniformly asymptotically stable.

O If Wi(x) =ki|x|*, i=1,2,3, for some
constants ki,kp,k3,a >0, then x=0is
uniformly exponentially stable.

functions is also class-K.
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Lyapunov's Stability Theorem for Time-Varying Sys

L(1,x()) < 1V (1.3(0)
Let y(r) be the solution of y = —y(y), ¥(to) = V(t0,x(t)). Then,
V(t,x(1)) < y(1).
Since y = —y(y) is a first order differential equation and
—79(y) <0 when y > 0, we conclude monotone convergence of
y(1) to O:
y(1) = B(y(t0),t—10) = V(1,x(1)) < B(V(t0,x(t0)),1 —10)

\/—/
<o (|x(t0)])

= ai(x(1)]) < B(ea(lx(10)]),1—10)
= |x(1)] < B(|x(t0)l,1 —10)
= ay ! (B(oa(|x(r0)]),1 — 10))
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O If W) (x) < V(t,x) < W(x) and
. 14 1%

V(t,x) £ T —f(t x) <0 for some
positive definite functlons Wi(-), Wal-)
on a domain D that includes the origin,
then x =0 is uniformly stable.

@ |If, further, V(t,x) < —Ws(x) Vx € D for
some positive definite W3(-), then x=0
is uniformly asymptotically stable.

© If D=TR" and W(-) is radially
unbounded, then x =0 is globally
uniformly asymptotically stable.

O If Wi(x) =ki|x|*, i=1,2,3, for some
constants ki,kp,k3,a >0, then x=0is
uniformly exponentially stable.

y
‘ —(y)

A
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Lyapunov's Stability Theorem for Time-Varying Systems

Proof:
© If oy(-) is class K. then ' (-) exists globally above.

0 o3(|x]) = ksx|*, an(|x]) = kalx|*

1

1 1
B(r.s)=re /K2 = B(r.s) = (lz?"“‘f_(k”km)a - (?) e
1
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If W (x) < V(1,x) < Wy(x) and
3 14 1%
V(t,x) & = +— <0 f

(t,x) 3 4F axf(t,x) < 0 for some
positive definite functions W, (-), Wa(-)
on a domain D that includes the origin,
then x =0 is uniformly stable.
If, further, V(r,x) < —Ws(x) Vx € D for
some positive definite W3(-), then x=0
is uniformly asymptotically stable.
If D=R" and W, (-) is radially
unbounded, then x =0 is globally
uniformly asymptotically stable.
If Wi(x) = ki|x|*, i=1,2,3, for some
constants ki,kp,k3,a >0, then x=0is
uniformly exponentially stable.
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Example 1

Example:

3

x=—g(t)x’ where g(t)>1 forall ¢

1 .
V(x) = Exz = V(t,x) = —g(tx* < —x* 2 W;(x)
Globally uniformly asymptotically stable but not exponentially

stable. Take g(7) =1 as a special case.
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Example 2

Example: i =A(r)x. Take V(x) =xTP(r)x:
V(x) = x"P(t)x+i"P(t)x+x"P(t)x
x"(P+ATP+ PA)x
2-0(r)
If kyI < P(t) <kl and k31 < Q(1), ky,ka,k3 > 0, then
kilx|> < V(t,x) <ko|x|* and V(t,x) < —k3|x|?

= global uniform exponential stability.
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A Lasalle-Krasovskii- Type Result

What if W3(-) is only semidefinite? > Khalil, Section 8.3

Lasalle-Krasovskii Invariance Principle is not applicable to time-

varying systems. Instead, use the following (weaker) result:
Theorem: Suppose W;(x) < V(t,x) < Wa(x)

oV 9V
W*’gf(fax) < —Ws(x),

where Wi (-),W,(-) are positive definite and W3(-) is positive
semidefinite. Suppose, further, W;(-) is radially unbounded,
f(#,x) is locally Lipschitz in x and bounded in z, and W3(:) is

C'. Then
W3(x(t)) — 0 as t — oo.

Note: This proves convergence to S = {x: Wz(x) = 0} whereas
the Invariance Principle, when applicable, guarantees conver-

gence to the largest invariant set within S.
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Example 3

Example:
X1 = —Xxi +w(t)x2
Xy = —w(t)x1
1, 1, . T .
V(t,x) = it = V(t,x) = —x7. If w(z) is bounded in
t then the theorem above implies x; () — 0 as # — oo, but no
guarantee about the convergence of x;(r) to zero.

By contrast, if w(f) =w # 0, then we can use the Invariance
Principle and conclude x,(7) — 0 (show this).
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Barbalat's Lemma

Barbalat's Lemma (used in proving the theorem above): > Uniformly continuous

. t ) o ] ) means: For every € >0
If }LIEO/() O (T)dt exists and is finite, and ¢(-) is uniformly con- there exists 8 > 0 such
tinuous then ¢ (1) — 0 as 1 — oo. that V1,1 |t — 1| <

8=¢(n)—9(n)<e.
Boundedness of the
derivative ¢(¢) implies
1,2,3,... with amplitude =k, width = 1/&>, then uniform continuity.

/mqb(t)dt:iklz<oo but  9(1) /0.
0 k=1

Uniform continuity in Barbalat's Lemma can't be relaxed:
Example: Let ¢(z) be a sequence of pulses centered at k =
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A Lasalle-Krasovskii-Type Result: Proof

Proof of the theorem:
or(|x]) < V(t,x) <op(lx]) o €K
= ()] < o5 (o ([x(10)))
x(t) bounded = x(t) =f(¢,x(¢)) is bounded = x(z) is uniformly
continuous.
V(t,x) < —Ws(x(t))

T
= V((T) = Vix(t).10) < = [ Wala(r))ds

= /t CWs(x(1))dt < V(x(to), ) < oo

Since W3(:) is C!, it is uniformly continuous on the bounded
domain where x(7) resides. So, by Barbalat's Lemma, W3(x(z)) —
0 as t — oo
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» Theorem: Suppose

Wi(x) < V(1,x) < Wa(x)

W 2 fex) < Wi,
where Wi (-), W,(-) are
positive definite and
Ws(-) is positive
semidefinite. Suppose,
further, Wy (:) is radially
unbounded, f(z,x) is
locally Lipschitz in x and
bounded in #, and W5(-)
is C'. Then

W3(x(£)) — 0 as 1 — oo,
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