Lecture 11 – ME6402, Spring 2025 Lyapunov's Linearization Method

Maegan Tucker

Februrary 11, 2025

Goals of Lecture 11

- ▶ Further tools for studying systems based on their linearization
- ▶ Define region of attraction
- Obtain Lyapunov estimates of the region of attraction
- \blacktriangleright Introduce time-varying systems and comparison functions

Additional Reading

▶ Khalil Chapter 4.3-4.7

$$
\dot{x} = f(x) \quad f(0) = 0
$$

Define $A = \frac{\partial f(x)}{\partial x}\Big|_{x=0}$ and decompose $f(x)$ as

$$
f(x) = Ax + g(x) \quad \text{where} \quad \frac{|g(x)|}{|x|} \to 0 \text{ as } |x| \to 0.
$$

Theorem: The origin is asymptotically stable if $\Re{\lambda_i(A)} < 0$ for each eigenvalue, and unstable if $\Re{\lambda_i(A)} > 0$ for some eigenvalue.

Note: We can conclude only *local* asymptotic stability from this linearization. Inconclusive if *A* has eigenvalues on the imaginary axis.

Lyapunov's Linearization Method (cont.)

 $\frac{\text{Proof:}}{\text{Find}}$ $P = P^T > 0$ such that $A^T P + P A = -Q < 0$. Use $V(x) = x^TPx$ as a Lyapunov function for the nonlinear system $\dot{x} = Ax + g(x)$.

$$
\dot{V}(x) =
$$

Theorem: The origin is asymptotically stable if $\Re{\{\lambda_i(A)\}} < 0$ for each eigenvalue, and unstable if $\Re{\lambda_i(A)} > 0$ for some eigenvalue.

Lyapunov's Linearization Method (cont.)

 $\frac{\text{Proof:}}{\text{Find}}$ $P = P^T > 0$ such that $A^T P + P A = -Q < 0$. Use $V(x) = x^TPx$ as a Lyapunov function for the nonlinear system $\dot{x} = Ax + g(x)$. $\dot{V}(x) = x^T P(Ax + g(x)) + (Ax + g(x))^T P x$ $= x^T (PA + A^T P)x + 2x^T P g(x)$ ≤ −*x ^TQx*+2|*x*|∥*P*∥|*g*(*x*)[|] $\lambda_{\min}(Q)|x|^2 \leq x^T Qx \leq \lambda_{\max}(Q)|x|^2$ $\hat{V}(x) \leq -\lambda_{\min}(Q)|x|^2 + 2||P|||x||g(x)|$

Theorem: The origin is asymptotically stable if $\Re{\{\lambda_i(A)\}} < 0$ for each eigenvalue, and unstable if $\Re{\lambda_i(A)} > 0$ for some eigenvalue.

Lyapunov's Linearization Method (cont.) *xTQx* ⁺ ²|*x*|k*P*k|*g*(*x*)[|]

Proof (cont.): Since $\frac{|g(x)|}{|x|}$ $\frac{f(x)}{|x|} \to 0$ as $x \to 0$, for any $\gamma > 0$ we can find $r > 0$ such that Since [|]*g*(*x*)[|]

 $|x| \le r \Rightarrow |g(x)| \le \gamma |x|$; see the illustration below for the case $x \in \mathbb{R}$. $x \in \mathbb{R}$.

▶ Theorem: The origin is asymptotically stable if
$$
\Re{\lambda_i(A)} < 0
$$
 for each eigenvalue, and unstable if $\Re{\lambda_i(A)} > 0$ for some eigenvalue.

$$
\triangleright \quad \dot{V}(x) \leq -\lambda_{\min}(Q)|x|^2 +
$$

2||P|||x||g(x)|

 $\frac{1}{2}$ $\int \frac{1}{2}$ $\int \frac{1}{2}$ Finds, $|\lambda| \leq V(I) \implies V(\lambda) \leq \lambda_{\min}(\mathcal{Q}) |\lambda| + 2I ||I|| |\lambda|$. Thus, $|x| \le r(\gamma) \Rightarrow \dot{V}(x) \le -\lambda_{\min}(Q)|x|^2 + 2\gamma ||P|| |x|^2$.

Lyapunov's Linearization Method (cont.)

Proof (cont.): $\mathsf{Choose}\ \gamma < \frac{\lambda_{\mathsf{min}}(Q)}{2^{||\boldsymbol{D}||}}$ 2∥*P*∥ so that \dot{V} is negative definite in a ball of radius $r(\gamma)$ around the origin, and appeal to Lyapunov's Stability Theorem (Lecture 8) to conclude (local) asymptotic stability.

- Theorem: The origin is asymptotically stable if $\Re{\{\lambda_i(A)\}} < 0$ for each eigenvalue, and unstable if $\Re{\lambda_i(A)} > 0$ for some eigenvalue.
- ► $\dot{V}(x) \leq -\lambda_{\min}(Q)|x|^2 +$ $2||P|| |x||g(x)|$
- \blacktriangleright |*x*| < *r*(γ) \Rightarrow *V*(*x*) < $-\lambda_{\min}(Q)|x|^2 + 2\gamma ||P|| |x|^2$

 $R_A = \{x : \phi(t, x) \to 0\}$

"Quantifies" local asymptotic stability. Global asymptotic stability: $R_A = \mathbb{R}^n$.

Proposition: If $x = 0$ is asymptotically stable, then its region of attraction is an open, connected, invariant set. Moreover, the boundary is formed by trajectories.

Region of Attraction

Example: van der Pol system in reverse time:

$$
\dot{x}_1 = -x_2
$$

$$
\dot{x}_2 = x_1 - x_2 + x_2^3
$$

The boundary is the (unstable) limit cycle. Trajectories starting within the limit cycle converge to the origin.

Region of Attraction Example: bistable switch:

Example: bistable switch:

Estimating the Region of Attraction with a Lyapunov Function non linear systems—lecture 11 notes 3 notes 3

Suppose $\dot{V}(x) < 0$ in $D - \{0\}$. The level sets of *V* inside *D* are invariant and trajectories starting in them converge to the origin. Therefore we can use the largest levet set of V that fits into D as an (under)approximation of the region of attraction.

simple (but often conservative) choice is: $V(x) = x^T P x$ where *P* is selected for the linearization (see p.1). This estimate depends on the choice of Lyapunov function. A

$$
\dot{x} = f(t, x) \quad f(t, 0) \equiv 0
$$

To simplify the definitions of stability and asymptotic stability for the equilibrium $x = 0$, we first define a class of functions known as "comparison functions."

▶ Khalil (Sec. 4.5), Sastry (Sec. 5.2)

Comparison Functions

Definition: A continuous function $\alpha : [0, \infty) \to [0, \infty)$ is class-K if it is zero at zero and strictly increasing. It is class- \mathcal{K}_{∞} if, in addition, $\alpha(r) \rightarrow \infty$ as $r \rightarrow \infty$.

A continuous function β : $[0,\infty) \times [0,\infty) \to [0,\infty)$ is class- \mathcal{KL} if:

- θ $\beta(\cdot,s)$ is class-K for every fixed *s*,
- **2** $\beta(r, \cdot)$ is decreasing and $\beta(r, s) \rightarrow 0$ as $s \rightarrow \infty$, for every fixed *r*.

Example: $\alpha(r) = \tan^{-1}(r)$ is class-*K*, $\alpha(r) = r^c, c > 0$ is class- $\mathcal{K}_{\infty}, \ \boldsymbol{\beta}(r,s) = r^c e^{-s}$ is class- $\mathcal{KL}.$

Comparison Functions

Proposition: If $V(\cdot)$ is positive definite, then we can find class- K functions $\alpha_1(\cdot)$ and $\alpha_2(\cdot)$ such that

 $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|).$

If $V(\cdot)$ is radially unbounded, we can choose $\alpha_1(\cdot)$ to be class- \mathcal{K}_{∞} .

Example: $V(x) = x^T P x$ $P = P^T > 0$ $\alpha_1(|x|) = \lambda_{\min}(P)|x|^2 \quad \alpha_2(|x|) = \lambda_{\max}(P)|x|^2.$

Stability Definitions

Definition: $x = 0$ is stable if for every $\varepsilon > 0$ and t_0 , there exists $\delta > 0$ such that

 $|x(t_0)| \leq \delta(t_0, \varepsilon) \implies |x(t)| \leq \varepsilon \quad \forall t \geq t_0.$

If the same δ works for all t_0 , *i.e.* $\delta = \delta(\varepsilon)$, then $x = 0$ is uniformly stable.

It is easier to define uniform stability and uniform asymptotic stability using comparison functions (next slide)

Stability Definitions

 \blacktriangleright $x = 0$ is uniformly stable if there exists a class-K function $\alpha(\cdot)$ and a constant $c > 0$ such that

 $|x(t)| < \alpha(|x(t_0)|)$

for all $t \ge t_0$ and for every initial condition such that $|x(t_0)| \le c$.

 \triangleright uniformly asymptotically stable if there exists a class- $\mathcal{KL}(\beta(\cdot,\cdot))$ s.t.

$$
|x(t)| \leq \beta(|x(t_0)|, t-t_0)
$$

for all $t \ge t_0$ and for every initial condition such that $|x(t_0)| \le c$.

 \triangleright globally uniformly asymptotically stable if $c = ∞$.

 $▶$ uniformly exponentially stable if $β(r, s) = kre^{-\lambda s}$ for some $k, \lambda > 0$:

$$
|x(t)| \leq k|x(t_0)|e^{-\lambda(t-t_0)}
$$

for all $t \geq t_0$ and for every initial condition such that $|x(t_0)| \leq c$.