Lecture 11 – ME6402, Spring 2025 Lyapunov's Linearization Method

Maegan Tucker

Februrary 11, 2025

Goals of Lecture 11

- Further tools for studying systems based on their linearization
- Define region of attraction
- Obtain Lyapunov estimates of the region of attraction
- Introduce time-varying systems and comparison functions

Additional Reading

Khalil Chapter 4.3-4.7

$$\begin{split} \dot{x} = f(x) \quad f(0) = 0 \\ \text{Define } A &= \left. \frac{\partial f(x)}{\partial x} \right|_{x=0} \text{ and decompose } f(x) \text{ as} \\ f(x) &= Ax + g(x) \quad \text{where } \quad \frac{|g(x)|}{|x|} \to 0 \text{ as } |x| \to 0. \\ \hline \text{Theorem: The origin is asymptotically stable if } \Re\{\lambda_i(A)\} < 0 \text{ for each eigenvalue, and unstable if } \Re\{\lambda_i(A)\} > 0 \text{ for some eigenvalue.} \end{split}$$

<u>Note:</u> We can conclude only *local* asymptotic stability from this linearization. Inconclusive if A has eigenvalues on the imaginary axis.

<u>Proof:</u> Find $P = P^T > 0$ such that $A^T P + PA = -Q < 0$. Use $V(x) = x^T Px$ as a Lyapunov function for the nonlinear system $\dot{x} = Ax + g(x)$. $\dot{V}(x) =$

Theorem: The origin is asymptotically stable if $\Re{\lambda_i(A)} < 0$ for each eigenvalue, and unstable if $\Re{\lambda_i(A)} > 0$ for some eigenvalue.

Proof: Find $P = P^T > 0$ such that $A^T P + P A = -O < 0$. Use $V(x) = x^T P x$ as a Lyapunov function for the nonlinear system $\dot{x} = Ax + g(x)$. $\dot{V}(x) = x^T P(Ax + g(x)) + (Ax + g(x))^T Px$ $= x^{T}(PA + A^{T}P)x + 2x^{T}Pg(x)$ $< -x^T O x + 2|x| ||P|| ||g(x)|$ $\lambda_{\min}(O)|x|^2 \leq x^T O x \leq \lambda_{\max}(O)|x|^2$ $\dot{V}(x) \le -\lambda_{\min}(O)|x|^2 + 2||P|||x||g(x)|$

Theorem: The origin is asymptotically stable if $\Re{\lambda_i(A)} < 0$ for each eigenvalue, and unstable if $\Re{\lambda_i(A)} > 0$ for some eigenvalue.

 $\frac{\text{Proof (cont.):}}{\text{Since } \frac{|g(x)|}{|x|} \to 0 \text{ as } x \to 0, \text{ for any } \gamma > 0 \text{ we can find } r > 0 \text{ such that}}$

 $|x| \leq r \Rightarrow |g(x)| \leq \gamma |x|;$ see the illustration below for the case $x \in \mathbb{R}.$

$$\dot{V}(x) \le -\lambda_{\min}(Q)|x|^2 + 2\|P\||x||g(x)|$$

Thus,
$$|x| \leq r(\gamma) \implies \dot{V}(x) \leq -\lambda_{\min}(Q)|x|^2 + 2\gamma ||P|||x|^2$$
.

Proof (cont.):

Choose $\gamma < \frac{\lambda_{\min}(Q)}{2||P||}$ so that \dot{V} is negative definite in a ball of radius $r(\gamma)$ around the origin, and appeal to Lyapunov's Stability Theorem (Lecture 8) to conclude (local) asymptotic stability.

- Theorem: The origin is asymptotically stable if ℜ{λ_i(A)} < 0 for each eigenvalue, and unstable if ℜ{λ_i(A)} > 0 for some eigenvalue.
- $\dot{V}(x) \le -\lambda_{\min}(Q)|x|^2 + 2\|P\||x||g(x)|$
- $|x| \le r(\gamma) \Rightarrow \dot{V}(x) \le -\lambda_{\min}(Q)|x|^2 + 2\gamma ||P|||x|^2$

 $R_A = \{x : \phi(t, x) \to 0\}$

"Quantifies" local asymptotic stability. Global asymptotic stability: $R_A = \mathbb{R}^n$.

Proposition: If x = 0 is asymptotically stable, then its region of attraction is an open, connected, invariant set. Moreover, the boundary is formed by trajectories.

Region of Attraction

Example: van der Pol system in reverse time:

$$\dot{x}_1 = -x_2$$
$$\dot{x}_2 = x_1 - x_2 + x_2^2$$

The boundary is the (unstable) limit cycle. Trajectories starting within the limit cycle converge to the origin.

Region of Attraction

Example: bistable switch:

$$\dot{x}_1 = -ax_1 + x_2$$
$$\dot{x}_2 = \frac{x_1^2}{1 + x_1^2} - bx_2$$

Estimating the Region of Attraction with a Lyapunov Function

Suppose $\dot{V}(x) < 0$ in $D - \{0\}$. The level sets of V inside D are invariant and trajectories starting in them converge to the origin. Therefore we can use the largest levet set of V that fits into D as an (under)approximation of the region of attraction.

This estimate depends on the choice of Lyapunov function. A simple (but often conservative) choice is: $V(x) = x^T P x$ where P is selected for the linearization (see p.1).

$$\dot{x} = f(t, x) \quad f(t, 0) \equiv 0$$

To simplify the definitions of stability and asymptotic stability for the equilibrium x = 0, we first define a class of functions known as "comparison functions."

 Khalil (Sec. 4.5), Sastry (Sec. 5.2)

Comparison Functions

<u>Definition</u>: A continuous function $\alpha : [0,\infty) \to [0,\infty)$ is <u>class- \mathcal{K} </u> if it is zero at zero and strictly increasing. It is <u>class- \mathcal{K}_{∞} </u> if, in addition, $\alpha(r) \to \infty$ as $r \to \infty$.

A continuous function $\beta : [0,\infty) \times [0,\infty) \to [0,\infty)$ is <u>class- \mathcal{KL} </u> if:

- **1** $\beta(\cdot,s)$ is class- \mathcal{K} for every fixed s,
- 2 $\beta(r, \cdot)$ is decreasing and $\beta(r, s) \to 0$ as $s \to \infty$, for every fixed r.

 $\begin{array}{ll} \underline{\mathsf{Example:}} & \alpha(r) = \tan^{-1}(r) \text{ is class-}\mathcal{K}, \ \alpha(r) = r^c, c > 0 \text{ is class-}\\ \overline{\mathcal{K}_{\infty}}, \ \beta(r,s) = r^c e^{-s} \text{ is class-} \mathcal{KL}. \end{array}$

Comparison Functions

<u>Proposition</u>: If $V(\cdot)$ is positive definite, then we can find class- \mathcal{K} functions $\alpha_1(\cdot)$ and $\alpha_2(\cdot)$ such that

 $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|).$

If $V(\cdot)$ is radially unbounded, we can choose $\alpha_1(\cdot)$ to be class- $\mathcal{K}_\infty.$

 $\underbrace{ \begin{array}{ll} \underline{\mathsf{Example:}} & V(x) = x^T P x \quad P = P^T > 0 \\ \alpha_1(|x|) = \lambda_{\min}(P) |x|^2 \quad \alpha_2(|x|) = \lambda_{\max}(P) |x|^2. \end{array} }$

Stability Definitions

<u>Definition:</u> x = 0 is stable if for every $\varepsilon > 0$ and t_0 , there exists $\delta > 0$ such that

 $|x(t_0)| \leq \delta(t_0, \varepsilon) \implies |x(t)| \leq \varepsilon \quad \forall t \geq t_0.$

If the same δ works for all t_0 , *i.e.* $\delta = \delta(\varepsilon)$, then x = 0 is uniformly stable.

It is easier to define uniform stability and uniform asymptotic stability using comparison functions (next slide)

Stability Definitions

► x = 0 is uniformly stable if there exists a class- \mathcal{K} function $\alpha(\cdot)$ and a constant c > 0 such that

 $|x(t)| \leq \alpha(|x(t_0)|)$

for all $t \ge t_0$ and for every initial condition such that $|x(t_0)| \le c$.

• uniformly asymptotically stable if there exists a class- $\mathcal{KL} \ \beta(\cdot, \cdot)$ s.t.

$$|x(t)| \le \beta(|x(t_0)|, t-t_0)$$

for all $t \ge t_0$ and for every initial condition such that $|x(t_0)| \le c$.

• globally uniformly asymptotically stable if $c = \infty$.

• uniformly exponentially stable if $\beta(r,s) = kre^{-\lambda s}$ for some $k, \lambda > 0$:

$$|x(t)| \le k |x(t_0)| e^{-\lambda(t-t_0)}$$

for all $t \ge t_0$ and for every initial condition such that $|x(t_0)| \le c$.