Lecture 1 – ME6402, Spring 2025 Nonlinear Control Systems: A Brief Introduction

Maegan Tucker (Adapted from S. Coogan)

January 6, 2025

Goals of Lecture 1

- ▶ Introduce nonlinear systems
- Define equilibria, linearization, stability in scalar systems
- ▶ Provide some canonical examples

Additional Reading

- Khalil, Chapter 1
- Sastry, Chapter 1

These slides are derived from notes created by Murat Arcak and licensed under a [Cre](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ative Commons Attribution-NonCommercial-](http://creativecommons.org/licenses/by-nc-sa/4.0/)[ShareAlike 4.0 International License.](http://creativecommons.org/licenses/by-nc-sa/4.0/)

$$
\dot{x} = Ax + Bu \quad \longrightarrow \quad \dot{x} = f(x, u)
$$

▶ Analysis:

 $\dot{x} = f(x)$ *f* : $\mathbb{R}^n \to \mathbb{R}^n$ time-invariant (autonomous) $\dot{x} = f(t, x)$ $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ time-varying (non-autonomous)

▶ Design:

 $\dot{x} = f(x, u)$ *u* to be designed as a function of *x*.

 \blacktriangleright We use the shorthand notation $\dot{x} = f(x)$ for *d* $\frac{d}{dt}x(t) = f(x(t)).$

Equilibria

 $x = x^*$ is an equilibrium for $\dot{x} = f(x)$ if $f(x^*) = 0$.

Example: Linear system $\dot{x} = Ax$.

If A is nonsingular, $x^* = 0$ is the unique equilibrium.

If *A* is singular, the nullspace defines a continuum of equilibria.

A nonsingular matrix *A* has the following equivalent properties:

- \blacktriangleright det(*A*) \neq 0
- \blacktriangleright The rows (or columns) are linearly independent

The nullspace of *A* is:

▶ Nullspace(*A*) = { $x \in \mathbb{R}^n$ | $Ax = 0$ }

Example: Logistic Growth

Example: Logistic growth model in population dynamics

$$
\dot{x} = f(x) = r \left(1 - \frac{x}{K}\right) x, \quad r > 0, \quad K > 0
$$
\ngrowth rate

- \blacktriangleright $x > 0$ denotes the population (at time *t*)
- \blacktriangleright *r* is the intrinsic growth rate
- \blacktriangleright *K* is called the carrying capacity (the maximum population size that the environment can sustain)

Determining Stability in Scalar Systems

For systems with a scalar state variable $x \in \mathbb{R}$, stability can be determined from the sign of $f(x)$ around the equilibrium. In this example $f(x) > 0$ for $x \in (0, K)$, and $f(x) < 0$ for $x > K$; therefore

- $x = 0$ unstable equilibrium
- $x = K$ asymptotically stable.

Logistic growth model in population dynamics

$$
\dot{x} = f(x) = r \left(1 - \frac{x}{K} \right) x,
$$

growth rate

 $r > 0, K > 0$

Linearization

Local stability properties of x^* can be determined by linearizing the vector field $f(x)$ at x^* :

> $f(x^* + \tilde{x}) = f(x^*)$ $= 0$ $+\frac{\partial f}{\partial x}$ ∂x $\Big|$ _{*x*=*x*[∗]} \triangle \triangle ≜ *A* $\tilde{x} +$ higher order terms

Thus, the linearized model is:

$$
\dot{\tilde{x}} = A\tilde{x}.
$$

If $\Re \lambda_i(A) < 0$ for each eigenvalue λ_i of A, then x^* is asymp. stable.

If $\Re \lambda_i(A) > 0$ for some eigenvalue λ_i of A, then x^* is <u>unstable</u>.

the expansion is a first-order Taylor series approximation around the linearized state $\tilde{x} = x - x^*$

 \blacktriangleright $\Re \lambda_i(A) = 0$ indicates marginal stability or oscillatory behavior for the linearized system. E.g. an undamped pendulum

Example (continued)

Example: Logistic growth model above:

Caveats

1 Only local properties can be determined from the linearization.

Example: The logistic growth model linearized at $x = 0$ $(x = rx)$ would incorrectly predict unbounded growth of *x*(*t*). In reality, $x(t) \rightarrow K$.

Caveats (continued)

2 If $\Re(\lambda_i(A)) \leq 0$ with equality for some *i*, then linearization is inconclusive as a stability test. Higher order terms determine stability.

Second order example: Pendulum

$$
\ell m \ddot{\theta} = -k\ell \dot{\theta} - mg \sin \theta
$$

Define $x = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$. State space: $S^1 \times \mathbb{R}$.

$$
\dot{x}_1 = x_2
$$

$$
\dot{x}_2 = -\frac{k}{m} x_2 - \frac{g}{\ell} \sin x_1
$$

Equilibria: (0,0) and $(\pi, 0)$

∂ *f* $rac{\partial y}{\partial x} =$

Second order example: Pendulum

$$
\ell m \ddot{\theta} = -k\ell \dot{\theta} - mg \sin \theta
$$

\nDefine $x = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$. State space: $S^1 \times \mathbb{R}$.
\n $\dot{x}_1 = x_2$
\n $\dot{x}_2 = -\frac{k}{m} x_2 - \frac{g}{\ell} \sin x_1$
\nEquilibrium: (0,0) and $(\pi, 0)$
\n
$$
\frac{\partial f}{\partial x} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell} \cos x_1 & -\frac{k}{m} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell} & -\frac{k}{m} \end{bmatrix}
$$
 (stable) at $x_1 = 0$
\n $\frac{\partial f}{\partial x} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell} \cos x_1 & -\frac{k}{m} \end{bmatrix} = \begin{bmatrix} \frac{g}{\ell} & -\frac{k}{m} \\ \frac{g}{\ell} & -\frac{k}{m} \end{bmatrix}$ (unstable) at $x_1 = \pi$

[Lecture 1 Notes – ME6402, Spring 2025](#page-0-0) 10/11

θ

×.

 ℓ

mg

 λ $\bar{\chi}$ ₹

Second order example: Pendulum (continued)

Phase portrait: plot of $x_1(t)$ vs. $x_2(t)$ for 2nd order systems

Phase portrait of the pendulum for the undamped case $k = 0$.

[Lecture 1 Notes – ME6402, Spring 2025](#page-0-0) 11/11