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Goals of Lecture 1

» Introduce nonlinear
systems

» Define equilibria,
linearization, stability in
scalar systems

» Provide some canonical
examples

Additional Reading
» Khalil, Chapter 1
> Sastry, Chapter 1

These slides are derived from notes created
by Murat Arcak and licensed under a Cre-
ative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.
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Nonlinear Systems

» We use the shorthand
notation x = f(x) for

x=Ax+Bu — x=f(xu)

> Analysis: 9 x(1) =1 (x(0)).
i=f(x) [f:R'">R" time-invariant (autonomous)
i=f(t,x) f:RxR"—=R" time-varying (non-autonomous)

» Design:

X =f(x,u) utobe designed as a function of x.
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Equilibria

0.

x=x"is an equilibrium for x = f(x) if f(x*)

Example: Linear system & = Ax.

If A is nonsingular, x* =0 is the unique equilibrium.

If A is singular, the nullspace defines a continuum of equilibria.
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A nonsingular matrix A has the
following equivalent properties:

> det(A) #0

» The rows (or columns)
are linearly independent

The nullspace of A is:

> Nullspace(A) = {x e R" |
Ax=0}
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Example: Logistic Growth

Example: Logistic growth model in population dynamics [ r
X
x:f(x):r(lf?)x, r>0, K>0
Ne——
growth rate K p
» x> 0 denotes the population (at time 7) I
» ris the intrinsic growth rate £) :
» K is called the carrying capacity (the maximum population .
size that the environment can sustain) ; .
© >
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Determining Stability in Scalar Systems

For systems with a scalar state variable x € R, stability can be > Logistic growth model in

determined from the sign of f(x) around the equilibrium. In this population dynamics

example f(x) >0 for x € (0,K), and f(x) < 0 for x > K; therefore
x=0 unstable equilibrium —

growth rate
x=K asymptotically stable. >0 K>0

X
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Linearization

Local stability properties of x* can be determined by linearizing
the vector field f(x) at x™:

fOX*+3%) =f(x")+ of %+ higher order terms
—— ox X=x*
=0 >
£ A

Thus, the linearized model is:
X =AX.
If RA(A) <O for each eigenvalue A; of A, then x" s
asymp. stable.
If RA;(A) > 0 for some eigenvalue A; of A, then x* is unstable.
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» the expansion is a
first-order Taylor series
approximation around
the linearized state
I=x—x"

> RAi(A) =0 indicates
marginal stability or
oscillatory behavior for
the linearized system.
E.g. an undamped
pendulum
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Example (continued)

Example: Logistic growth model above:

o)

£(0)>0 f(K)<0
unstable stable
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@ Only local properties can be determined from the
linearization.
Example: The logistic growth model linearized at x =0
(x = rx) would incorrectly predict unbounded growth of
x(t). In reality, x(r) — K.
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Caveats (continued)

@ If RA;(A) <0 with equality for some i, then linearization is
inconclusive as a stability test. Higher order terms
determine stability.

Example: Sl =x° vs. flx)=—x°

VN

f/(0) =0 in each case, but one is stable and the other is

unstable.

Lecture 1 Notes — ME6402, Spring 2025 9/11



Second order example: Pendulum

%)

¢m6 = —klO —mgsin O
. 6
Define x = l 0 ] . State space: S! xR.

Xl =X

k

Xp=——Xx)— & sinx
m

14
Equilibria: (0,0) and (7,0)

of

M
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Second order example: Pendulum

[°)

¢m6 = —klO —mgsin O
. 6
Define x = l 0 ] . State space: S! xR.

Xl =X
Xy = —E)CZ _g sinx
m 14
Equilibria: (0,0) and (7,0)
0 1 (stable)
g k stable) at x; =0
_—= k = — m
ox —2cosx; —— 0 1
m ¢k (unstable) at x; = 7
\L¢ m
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Second order example: Pendulum (continued)

Phase portrait: plot of xj(¢) vs. x;(¢) for 2nd order systems

X2=9
o
L

-2 n 0 n 2n

Phase portrait of the pendulum for the undamped case k = 0.
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