Lecture 1 – ME6402, Spring 2025 Nonlinear Control Systems: A Brief Introduction

Maegan Tucker (Adapted from S. Coogan)

January 6, 2025

Goals of Lecture 1

- Introduce nonlinear systems
- Define equilibria, linearization, stability in scalar systems
- Provide some canonical examples

Additional Reading

- Khalil, Chapter 1
- Sastry, Chapter 1

These slides are derived from notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

$$\dot{x} = Ax + Bu \longrightarrow \dot{x} = f(x, u)$$

Analysis:

 $\begin{aligned} \dot{x} &= f(x) \quad f: \mathbb{R}^n \to \mathbb{R}^n \quad \text{time-invariant (autonomous)} \\ \dot{x} &= f(t,x) \quad f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n \quad \text{time-varying (non-autonomous)} \end{aligned}$

Design:

 $\dot{x} = f(x, u)$ u to be designed as a function of x.

• We use the shorthand notation $\dot{x} = f(x)$ for $\frac{d}{dt}x(t) = f(x(t)).$

Equilibria

 $x = x^*$ is an equilibrium for $\dot{x} = f(x)$ if $f(x^*) = 0$.

Example: Linear system $\dot{x} = Ax$.

If A is nonsingular, $x^* = 0$ is the unique equilibrium.

If A is singular, the nullspace defines a continuum of equilibria.

A nonsingular matrix A has the following equivalent properties:

- $det(A) \neq 0$
- The rows (or columns) are linearly independent

The nullspace of A is:

► Nullspace(A) = { $x \in \mathbb{R}^n$ | Ax = 0}

Example: Logistic Growth

Example: Logistic growth model in population dynamics

$$\dot{x} = f(x) = \underbrace{r\left(1 - \frac{x}{K}\right)}_{\text{growth rate}} x, \qquad r > 0, \quad K > 0$$

- x > 0 denotes the population (at time *t*)
- ▶ *r* is the intrinsic growth rate
- K is called the carrying capacity (the maximum population size that the environment can sustain)

Determining Stability in Scalar Systems

For systems with a scalar state variable $x \in \mathbb{R}$, stability can be determined from the sign of f(x) around the equilibrium. In this example f(x) > 0 for $x \in (0, K)$, and f(x) < 0 for x > K; therefore

- x = 0 unstable equilibrium
- x = K asymptotically stable.

 Logistic growth model in population dynamics

$$\dot{x} = f(x) = \underbrace{r\left(1 - \frac{x}{K}\right)}_{\text{growth rate}} x,$$

r > 0, K > 0

Linearization

Local stability properties of x^* can be determined by linearizing the vector field f(x) at x^* :

 $f(x^* + \tilde{x}) = f(x^*) + \frac{\partial f}{\partial x}\Big|_{x = x^*} \tilde{x} + \text{higher order terms}$ $= 0 \qquad \triangleq A$

Thus, the linearized model is:

$$\dot{\tilde{x}} = A\tilde{x}.$$

If $\Re \lambda_i(A) < 0$ for each eigenvalue λ_i of A, then x^* is asymp. stable.

If $\Re \lambda_i(A) > 0$ for some eigenvalue λ_i of A, then x^* is unstable.

 ℜλ_i(A) = 0 indicates marginal stability or oscillatory behavior for the linearized system.

 E.g. an undamped pendulum

Example (continued)

Example: Logistic growth model above:

Caveats

Only local properties can be determined from the linearization.

Example: The logistic growth model linearized at x = 0 $(\dot{x} = rx)$ would incorrectly predict unbounded growth of x(t). In reality, $x(t) \rightarrow K$.

Caveats (continued)

② If ℜλ_i(A) ≤ 0 with equality for some *i*, then linearization is inconclusive as a stability test. Higher order terms determine stability.

Second order example: Pendulum

$$\ell m \ddot{\theta} = -k\ell \dot{\theta} - mg\sin\theta$$

Define $x = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$. State space: $S^1 \times \mathbb{R}$.
 $\dot{x}_1 = x_2$
 $\dot{x}_2 = -\frac{k}{m}x_2 - \frac{g}{\ell}\sin x_1$
Equilibria: (0,0) and (π ,0)

 $\frac{\partial f}{\partial x} =$

Second order example: Pendulum

$$\ell m \ddot{\theta} = -k\ell \dot{\theta} - mg \sin \theta$$
Define $x = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$. State space: $S^1 \times \mathbb{R}$.
 $\dot{x}_1 = x_2$
 $\dot{x}_2 = -\frac{k}{m}x_2 - \frac{g}{\ell}\sin x_1$
Equilibria: (0,0) and (π ,0)
 $\frac{\partial f}{\partial x} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell}\cos x_1 & -\frac{k}{m} \end{bmatrix} = \begin{cases} \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell} & -\frac{k}{m} \end{bmatrix}$ (stable) at $x_1 = 0$
 $\begin{bmatrix} 0 & 1 \\ \frac{g}{\ell} & -\frac{k}{m} \end{bmatrix}$ (unstable) at $x_1 = \pi$

Lecture 1 Notes - ME6402, Spring 2025

Second order example: Pendulum (continued)

Phase portrait: plot of $x_1(t)$ vs. $x_2(t)$ for 2nd order systems

Phase portrait of the pendulum for the undamped case k = 0.

Lecture 1 Notes - ME6402, Spring 2025