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Goals of Lecture 1

▶ Introduce nonlinear
systems

▶ Define equilibria,
linearization, stability in
scalar systems

▶ Provide some canonical
examples

Additional Reading

▶ Khalil, Chapter 1

▶ Sastry, Chapter 1
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Nonlinear Systems

ẋ = Ax+Bu −→ ẋ = f (x,u)

▶ Analysis:
ẋ = f (x) f : Rn → Rn time-invariant (autonomous)
ẋ = f (t,x) f : R×Rn → Rn time-varying (non-autonomous)

▶ Design:

ẋ = f (x,u) u to be designed as a function of x.
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▶ We use the shorthand
notation ẋ = f (x) for
d
dt

x(t) = f (x(t)).



Equilibria

x = x∗ is an equilibrium for ẋ = f (x) if f (x∗) = 0.

Example: Linear system ẋ = Ax.
If A is nonsingular, x∗ = 0 is the unique equilibrium.
If A is singular, the nullspace defines a continuum of equilibria.
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A nonsingular matrix A has the
following equivalent properties:

▶ det(A) ̸= 0

▶ The rows (or columns)
are linearly independent

The nullspace of A is:

▶ Nullspace(A) = {x ∈ Rn |
Ax = 0}



Example: Logistic Growth

Example: Logistic growth model in population dynamics

ẋ = f (x) = r
(

1− x
K

)
︸ ︷︷ ︸
growth rate

x, r > 0, K > 0

▶ x > 0 denotes the population (at time t)

▶ r is the intrinsic growth rate

▶ K is called the carrying capacity (the maximum population
size that the environment can sustain)
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Determining Stability in Scalar Systems

For systems with a scalar state variable x ∈ R, stability can be
determined from the sign of f (x) around the equilibrium. In this
example f (x)> 0 for x ∈ (0,K), and f (x)< 0 for x > K; therefore

x = 0 unstable equilibrium
x = K asymptotically stable.
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▶ Logistic growth model in
population dynamics

ẋ = f (x) = r
(

1− x
K

)
︸ ︷︷ ︸
growth rate

x,

r > 0, K > 0



Linearization

Local stability properties of x∗ can be determined by linearizing
the vector field f (x) at x∗:

f (x∗+ x̃) = f (x∗)︸︷︷︸
= 0

+
∂ f
∂x

∣∣∣∣
x=x∗︸ ︷︷ ︸

≜ A

x̃+higher order terms

Thus, the linearized model is:
˙̃x = Ax̃.

If ℜλi(A)< 0 for each eigenvalue λi of A, then x∗ is
asymp. stable.
If ℜλi(A)> 0 for some eigenvalue λi of A, then x∗ is unstable.
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▶ the expansion is a
first-order Taylor series
approximation around
the linearized state
x̃ = x− x∗

▶ ℜλi(A) = 0 indicates
marginal stability or
oscillatory behavior for
the linearized system.
E.g. an undamped
pendulum



Example (continued)

Example: Logistic growth model above:

f ′(0)> 0
unstable

f ′(K)< 0
stable

f (x)

x
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Caveats

1 Only local properties can be determined from the
linearization.
Example: The logistic growth model linearized at x = 0
(ẋ = rx) would incorrectly predict unbounded growth of
x(t). In reality, x(t)→ K.
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Caveats (continued)

2 If ℜλi(A)≤ 0 with equality for some i, then linearization is
inconclusive as a stability test. Higher order terms
determine stability.
Example: f (x) = x3 vs. f (x) =−x3

xx

f ′(0) = 0 in each case, but one is stable and the other is
unstable.
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Second order example: Pendulum

ℓmθ̈ =−kℓθ̇ −mgsinθ

Define x =

[
θ

θ̇

]
. State space: S1 ×R.

ẋ1 = x2

ẋ2 =− k
m

x2 −
g
ℓ

sinx1

Equilibria: (0,0) and (π,0)

∂ f
∂x

=

 0 1

−g
ℓ

cosx1 − k
m

=



 0 1

−g
ℓ

− k
m

 (stable) at x1 = 0 0 1
g
ℓ

− k
m

 (unstable) at x1 = π
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Second order example: Pendulum (continued)

Phase portrait: plot of x1(t) vs. x2(t) for 2nd order systems
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Phase portrait of the pendulum for the undamped case k = 0.
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