ME 6402 — Lecture 9 *
LASALLE-KRASOVSKII INVARIANCE PRINCIPLE

February 4 2025

Overview:

e LaSalle-Krasovskii Invariance Principle, applicable when V(x) < 0.
* Lyapunov functions for linear systems

Additional Reading:

e Khalil, Chapter 4.2-4.3

Recall

Recall from the end of Lecture 8 the following example:

X1:X2

%= —axy—g(xn) a>0, xg(x) >0 Vxe ()~ {0}

We considered the candidate Lyapunov function:

X1 1
V) = [ sy + 533

which resulted in the derivative condition on the interval D =

(=b,c) - {0}:

V(x) = —ax3

Since V(x) is negative semidefinite => stable.

If a = 0, no asymptotic stability because V(x) = 0 = V(x(t)) =

V(x(0)).
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"conservative system"

* Based on notes created by Murat
Arcak and licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

The pendulum is a special case with
g(x) = sin(x).
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If a > 0, the system is asymptotically stable but the Lyapunov func-
tion above doesn’t allow us to reach that conclusion. This is because
V(x) = 0 on the line x, = 0. We need either another V with negative
definite V, or the Lasalle-Krasovskii Invariance Principle.

LaSalle-Krasouvskii Invariance Principle

e Applicable to time-invariant systems.

¢ Allows us to conclude asymptotic stability from V(x) < 0 if
additional conditions hold.

Let O C D be a compact
set that is positively invariant with respect to the system x = f(x). Let
V : D — R be a continuously differentiable function such that V(x) < 0
in Q. Let E be the set of all points in Q) where V(x) = 0. Let M be the
largest invariant set in E. Then every solution starting in Q) approaches M

ast — oo,
Corollary: Lasalle-Krasovskii Invariance Principle®. Let x = 0 be an 2 Also known as the theorems of Bar-
equilibrium point for the system x = f(x). Let V : D — R be a continu- bashin and Krasovskii, who proved

. . L L. . . L it before the introduction of LaSalle’s
ously differentiable positive definite function on a domain D containing the invariance principle

origin x = 0, such that V(x) < 0in D. Let S = {x € D s.t. V(x) = 0}
and suppose that no solution can stay identically in S, other than the trivial
solution x(t) = 0. Then, the origin is asymptotically stable.

¢ Note: practically, the set D is often selected to be the level set
Q¢ = {x: V(x) < c} which is bounded such that V(x) < 0 in Q.
Then, we define S = {x € Q. : V(x) = 0} and let M be the largest
invariant set in S. Then, for every x(0) € Q,, x(t) — M.

e If no solution other than x(t) = 0 can stay identically in S then
M = {0} and we conclude asymptotic stability.

Corollary: Lasalle-Krasovskii Invariance Principle for Globally
Asymptotic Stability. Let x = 0 be an equilibrium point for the sys-

tem x = f(x). Let V : R" — R be a continuously differentiable, radially
unbounded, positive definite function such that V(x) < 0 for all x € R".
Let S = {x € R"s.t. V(x) = 0} and suppose that no solution can stay
identically in S, other than the trivial solution x(t) = 0. Then, the origin is
globally asymptotically stable.

Example (continued from before):

now 0
1
Xp = —axy—g(x1) a>0, xg(x) >0 Vx #0
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sl 1 .
Vi) = [T+ 58 = V(x) = —ad
S ={x € Qx, =0}

If x(t) stays identically in S, then xp(t) = 0 = % (t) = 0 =
g(x1(t)) = 0 = x1(t) = 0 = asymptotic stability from Corollary.

Example (linear system): Same system above with g(x7) = bx:

X =22
_ )
Xop = —axp —bx;y a>0,b>0
V(x) = 4x2 + 1x3 = V(x) = —ax} = Invariance Principle works
as in the example above.

Alternatively, construct another Lyapunov function with negative
definite V(x). Try V(x) = xT Px where P = PT > 0 is to be selected.

0 1
-b —a

Then, if we select P to satisfy PA + ATP = —Q for some positive

V(x) = x"Px + Px = xT(ATP 4 PA)x where A =

definite symmetric matrix Q = QT > 0, then

V(x) = —-xTQx <0
and we can conclude that the origin is asymptotically stable.

This method uses what’s known as the Lyapunov Equation, we will
explore this further next.

Linear Systems
Sastry (Sec. 5.7-5.8), Khalil (Sec. 4.3)
The linear time-invariant system

¥=Ax xeR" (3)

has an equilibrium point at the origin (x = 0). From linear system
theory, we know that the equilibrium point is stable if and only if
R{1i(A)} <Oforalli =1,---,n and eigenvalues on the imaginary

3

axis have Jordan blocks of order one.3 3ie., if A is an eigenvalue of multiplicity

q then Al — A must have rank n — g.
Example: This is Theorem 4.5 in Khalil

01
00

A

] = A1p =0, rank(Al — A) =1 = unstable

00
00

A=

] = A1p =0, rank(Al — A) =0 = stable
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When all eigenvalues of A satisfy A; < 0, A is said to be Hurwitz.
The origin is asymptotically stable if and only if A is Hurwitz.

As alluded to before, asymptotic stability of the origin can also be
investigated using Lyapunov’s method.

Lyapunov Functions for Linear Systems

V(x)=xTPx P=PT >0
V(x) = xT(ATP + PA)x
If 3P = PT > 0 such that ATP+ PA = —Q < 0, then A is Hurwitz.
The converse is also true:

(4)

Theorem: A is Hurwitz if and only if for any Q = QT > 0, there
exists P = PT > 0 such that

ATP+PA =—-Q. (5)
Moreover, the solution P is unique. (5) is known as the Lyapunov Equation.
The Matlab command lyap(A’,Q)
Proof: returns the solution P.
(if) From (4) above, the Lyapunov function V(x) = xTPx proves
asymptotic stability which means A is Hurwitz.
(only if) Assume R{A;(A)} < 0Vi. Show 3P = PT > 0 such that
ATP+ PA = —Q.
Candidate: o
p— / ATE Qe gt ©)
0
¢ The integral exists because the integrand is a sum of terms# of the 4 This comes from the Jordan form
form t~1exp(A;t), where RA; < 0. So [[e?|| < xe™*. ] = P71AP which leads to:

e p_pT exp(At) = Prexi(]t)P’1

« =Y. Y Texp(Mit) Ry
e P> 0because x'Px = / (eAtx)TQ(eAx)dt > 0 and i=1k=1

0 R with r being the number of Jordan

=p(tx) blocks, and m; being the order of the
xTPx = 0 = ¢(t,x) =0 = x = 0 because ¢*! is nonsingular. Jordan block ;.
T ® (AT ATt~ At ATt At
o« ATP + PA = (Ae Qe 1 ATt Qe A)dt
0
d (ATt At
=—|e e
()

— eATthAt‘O —0— Q _ _Q
Uniqueness:

Suppose there is another P = PT > 0 satisfying P # P, and ATP +
PA =-Q.
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= (P-P)A+AT(P-P)=0

Define W(x) = xT(P — P)x.

%W(x(t)) — 0 — W(x(t)) = W(x(0)) W
Since A is Hurwitz, x(¢) — 0 and W(x(t)) — 0.

Combining the two statements above, we conclude W(x(0)) = 0 for
any x(0). This is possible only if P — P = 0 which contradicts P # P.

Invariance Principle Applied to Linear Systems

Similar to the nonlinear case, we can relax the positive definiteness
requirement on Q for proving asymptotic stability of linear systems.
Le., the Lyapunov equation can be satisfied for:

ATP+PA=-Q<0
In other words, we conclude that A is Hurwitz if Q is only semidefi-
nite?

Sketch Proof: Decompose Q as Q = CTC where C € R™", r is the
rank of Q.
V(x) = —xTQx = —xTCTCx = —yTy

where y £ Cx. The invariance principle guarantees asymptotic

stability if
y(t) =Cx(t) =0 = x(t) =0.
This implication is true if the pair (C, A) is observable> since observ- 5 A pair (C, A) is observable if the
ability implies that the only state x that produces identically zero observability matrix
output y(t) for all time is x = 0. C
CA

Example (beginning of the lecture): o~ | cA

X1 =X C A.n—]

Xp=—axp, —bx; a>0,b>0 has full rank, i.e., rank(O) = n.

Which can be rewritten in the form:

If we selected the Q matrix

5



ME 6402 — LECTURE 9

then Q is positive semidefinite. However, we can use the invariance
principle above by selecting C satisfying CTC = Q:

c=o va
and observing that (C, A) is observable if b # 0:

C

O =
CA

—vab —+/aa

0 \/E] = rank(O0) =2ifb #0

Solving the Lyapunov Equation

Assume we are given the system ¥ = Ax with
0 1
-1 -1

Assume we are asked to solve the Lyapunov equation with Q = 1.

A=

One method of solving the Lyapunov equation is to rearrange it in
the form Mx = y with x and y defined by stacking the elements of P
and Q.

Let

P =

P11 P12
P12 P22

The Lyapunov equation ATP 4+ PA = —Q can be written as

0 1] |pn pr2 4| P2 0 —1] __ |t o

-1 —1| |p2 p= P2 pz| |1 —1] 01
P12 p22 4Pz P Plz_ I e Y
—pu1— P12 —P12—p2 P2 —p12— p2] 0 -1
2p12 —p11 — P12 + P22 I e Y
—pu—pr2tpn —2p2—2pn | 0 -1

Putting this all together:

0 2 0 P11 -1
-1 -1 1 P12 = 0
0 -2 -2 P22 —1

This yields the solution

1 1.
z“ 055 b [1.5 —0.5]
12| = |—U. =
-05 1.0
pzz_ 10
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