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Overview:

• LaSalle-Krasovskii Invariance Principle, applicable when V̇(x) ≤ 0.

• Lyapunov functions for linear systems

Additional Reading:

• Khalil, Chapter 4.2-4.3

Recall

Recall from the end of Lecture 8 the following example:

ẋ1 = x2

ẋ2 = −ax2 − g(x1) a ≥ 0, xg(x) > 0 ∀x ∈ (−b, c)− {0}

The pendulum is a special case with
g(x) = sin(x).

We considered the candidate Lyapunov function:

V(x) =
∫ x1

0
g(y)dy +

1
2

x2
2

which resulted in the derivative condition on the interval D =

(−b, c)− {0}:

V̇(x) = −ax2
2

Since V̇(x) is negative semidefinite =⇒ stable.

If a = 0, no asymptotic stability because V̇(x) = 0 =⇒ V(x(t)) =

V(x(0)).

"conservative system"
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If a > 0, the system is asymptotically stable but the Lyapunov func-
tion above doesn’t allow us to reach that conclusion. This is because
V̇(x) = 0 on the line x2 = 0. We need either another V with negative
definite V̇, or the Lasalle-Krasovskii Invariance Principle.

LaSalle-Krasovskii Invariance Principle

• Applicable to time-invariant systems.

• Allows us to conclude asymptotic stability from V̇(x) ≤ 0 if
additional conditions hold.

Theorem: LaSalle Invariance Principle. Let Ω ⊂ D be a compact
set that is positively invariant with respect to the system ẋ = f (x). Let
V : D → R be a continuously differentiable function such that V̇(x) ≤ 0
in Ω. Let E be the set of all points in Ω where V̇(x) = 0. Let M be the
largest invariant set in E. Then every solution starting in Ω approaches M
as t → ∞.

Corollary: Lasalle-Krasovskii Invariance Principle2. Let x = 0 be an 2 Also known as the theorems of Bar-
bashin and Krasovskii, who proved
it before the introduction of LaSalle’s
invariance principle

equilibrium point for the system ẋ = f (x). Let V : D → R be a continu-
ously differentiable positive definite function on a domain D containing the
origin x = 0, such that V̇(x) ≤ 0 in D. Let S = {x ∈ D s.t. V̇(x) = 0}
and suppose that no solution can stay identically in S, other than the trivial
solution x(t) ≡ 0. Then, the origin is asymptotically stable.

• Note: practically, the set D is often selected to be the level set
Ωc = {x : V(x) ≤ c} which is bounded such that V̇(x) ≤ 0 in Ωc.
Then, we define S = {x ∈ Ωc : V̇(x) = 0} and let M be the largest
invariant set in S. Then, for every x(0) ∈ Ωc, x(t) → M.

• If no solution other than x(t) ≡ 0 can stay identically in S then
M = {0} and we conclude asymptotic stability.

Corollary: Lasalle-Krasovskii Invariance Principle for Globally
Asymptotic Stability. Let x = 0 be an equilibrium point for the sys-
tem ẋ = f (x). Let V : Rn → R be a continuously differentiable, radially
unbounded, positive definite function such that V̇(x) ≤ 0 for all x ∈ Rn.
Let S = {x ∈ Rn s.t. V̇(x) = 0} and suppose that no solution can stay
identically in S, other than the trivial solution x(t) ≡ 0. Then, the origin is
globally asymptotically stable.

Example (continued from before):

ẋ1 = x2

ẋ2 = −ax2 − g(x1) a > 0, xg(x) > 0 ∀x ̸= 0
(1)
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V(x) =
∫ x1

0
g(y)dy +

1
2

x2
2 =⇒ V̇(x) = −ax2

2

S = {x ∈ Ωc|x2 = 0}

If x(t) stays identically in S, then x2(t) ≡ 0 =⇒ ẋ2(t) ≡ 0 =⇒
g(x1(t)) ≡ 0 =⇒ x1(t) ≡ 0 =⇒ asymptotic stability from Corollary.

Example (linear system): Same system above with g(x1) = bx1:

ẋ1 = x2

ẋ2 = −ax2 − bx1 a > 0, b > 0
(2)

V(x) = b
2 x2

1 +
1
2 x2

2 =⇒ V̇(x) = −ax2
2 =⇒ Invariance Principle works

as in the example above.

Alternatively, construct another Lyapunov function with negative
definite V̇(x). Try V(x) = xT Px where P = PT > 0 is to be selected.

V̇(x) = xT Pẋ + Ṗx = xT(AT P + PA)x where A =

[
0 1

−b −a

]

Then, if we select P to satisfy PA + AT P = −Q for some positive
definite symmetric matrix Q = QT > 0, then

V̇(x) = −xTQx < 0

and we can conclude that the origin is asymptotically stable.

This method uses what’s known as the Lyapunov Equation, we will
explore this further next.

Linear Systems
Sastry (Sec. 5.7-5.8), Khalil (Sec. 4.3)

The linear time-invariant system

ẋ = Ax x ∈ Rn (3)

has an equilibrium point at the origin (x = 0). From linear system
theory, we know that the equilibrium point is stable if and only if
ℜ{λi(A)} ≤ 0 for all i = 1, · · · , n and eigenvalues on the imaginary
axis have Jordan blocks of order one.3 3 i.e., if λ is an eigenvalue of multiplicity

q then λI − A must have rank n − q.
This is Theorem 4.5 in KhalilExample:

A =

[
0 1
0 0

]
⇒ λ1,2 = 0, rank(λI − A) = 1 =⇒ unstable

A =

[
0 0
0 0

]
⇒ λ1,2 = 0, rank(λI − A) = 0 =⇒ stable
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When all eigenvalues of A satisfy ℜλi < 0, A is said to be Hurwitz.
The origin is asymptotically stable if and only if A is Hurwitz.

As alluded to before, asymptotic stability of the origin can also be
investigated using Lyapunov’s method.

Lyapunov Functions for Linear Systems

V(x) = xT Px P = PT > 0

V̇(x) = xT(AT P + PA)x
(4)

If ∃P = PT > 0 such that AT P + PA = −Q < 0, then A is Hurwitz.
The converse is also true:

Theorem: A is Hurwitz if and only if for any Q = QT > 0, there
exists P = PT > 0 such that

AT P + PA = −Q. (5)

Moreover, the solution P is unique. (5) is known as the Lyapunov Equation.
The Matlab command lyap(A’,Q)

returns the solution P.Proof:

(if) From (4) above, the Lyapunov function V(x) = xT Px proves
asymptotic stability which means A is Hurwitz.

(only if) Assume ℜ{λi(A)} < 0 ∀i. Show ∃P = PT > 0 such that
AT P + PA = −Q.

Candidate:
P =

∫ ∞

0
eAT tQeAtdt. (6)

• The integral exists because the integrand is a sum of terms4 of the 4 This comes from the Jordan form
J = P−1 AP which leads to:

exp(At) = P exp(Jt)P−1

=
r

∑
i=1

m

∑
k=1

tk−1 exp(λit)Rik

with r being the number of Jordan
blocks, and mi being the order of the
Jordan block Ji .

form tk−1 exp(λit), where ℜλi < 0. So ∥eAt∥ ≤ κe−αt.

• P = PT

• P > 0 because xT Px =
∫ ∞

0
(eAtx)TQ(eAtx)︸ ︷︷ ︸

≜ϕ(t,x)

dt ≥ 0 and

xT Px = 0 =⇒ ϕ(t, x) ≡ 0 =⇒ x = 0 because eAt is nonsingular.

• AT P + PA =
∫ ∞

0

(
ATeAT tQeAt + eAT tQeAt A

)
︸ ︷︷ ︸

=
d
dt

(
eAT tQeAt

)
dt

= eAT tQeAt
∣∣∣∞
0
= 0 − Q = −Q

Uniqueness:

Suppose there is another P̂ = P̂T > 0 satisfying P̂ ̸= P, and AT P̂ +

P̂A = −Q.
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=⇒ (P − P̂)A + AT(P − P̂) = 0

Define W(x) = xT(P − P̂)x.

d
dt

W(x(t)) = 0 =⇒ W(x(t)) = W(x(0)) ∀t.

Since A is Hurwitz, x(t) → 0 and W(x(t)) → 0.

Combining the two statements above, we conclude W(x(0)) = 0 for
any x(0). This is possible only if P − P̂ = 0 which contradicts P̂ ̸= P.

Invariance Principle Applied to Linear Systems

Similar to the nonlinear case, we can relax the positive definiteness
requirement on Q for proving asymptotic stability of linear systems.
I.e., the Lyapunov equation can be satisfied for:

AT P + PA = −Q ≤ 0

In other words, we conclude that A is Hurwitz if Q is only semidefi-
nite?

Sketch Proof: Decompose Q as Q = CTC where C ∈ Rr×n, r is the
rank of Q.

V̇(x) = −xTQx = −xTCTCx = −yTy

where y ≜ Cx. The invariance principle guarantees asymptotic
stability if

y(t) = Cx(t) ≡ 0 =⇒ x(t) ≡ 0.

This implication is true if the pair (C, A) is observable5 since observ- 5 A pair (C, A) is observable if the
observability matrix

O =


C

CA
CA2

...
CAn−1


has full rank, i.e., rank(O) = n.

ability implies that the only state x that produces identically zero
output y(t) for all time is x ≡ 0.

Example (beginning of the lecture):

ẋ1 = x2

ẋ2 = −ax2 − bx1 a > 0, b > 0

Which can be rewritten in the form:

ẋ =

[
0 1
−b −a

]
︸ ︷︷ ︸

A

x

If we selected the Q matrix

Q =

[
0 0
0 a

]
,
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then Q is positive semidefinite. However, we can use the invariance
principle above by selecting C satisfying CTC = Q:

C =
[
0

√
a
]

and observing that (C, A) is observable if b ̸= 0:

O =

[
C

CA

]
=

[
0

√
a

−
√

ab −
√

aa

]
=⇒ rank(O) = 2 if b ̸= 0

Solving the Lyapunov Equation

Assume we are given the system ẋ = Ax with

A =

[
0 1
−1 −1

]

Assume we are asked to solve the Lyapunov equation with Q = I.
One method of solving the Lyapunov equation is to rearrange it in
the form Mx = y with x and y defined by stacking the elements of P
and Q.

Let

P =

[
p11 p12

p12 p22

]

The Lyapunov equation AT P + PA = −Q can be written as[
0 1
−1 −1

] [
p11 p12

p12 p22

]
+

[
p11 p12

p12 p22

] [
0 −1
1 −1

]
= −

[
1 0
0 1

]
[

p12 p22

−p11 − p12 −p12 − p22

]
+

[
p12 −p11 − p12

p22 −p12 − p22

]
=

[
−1 0
0 −1

]
[

2p12 −p11 − p12 + p22

−p11 − p12 + p22 −2p12 − 2p22

]
=

[
−1 0
0 −1

]

Putting this all together: 0 2 0
−1 −1 1
0 −2 −2


p11

p12

p22

 =

−1
0
−1


This yields the solutionp11

p12

p22

 =

 1.5
−0.5
1.0

 ⇒ P =

[
1.5 −0.5
−0.5 1.0

]
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