ME 6402 – Lecture 8¹ LYAPUNOV STABILITY THEORY January 30 2025

Overview:

- Define Lyapunov stability notions
- Lyapunov Stability Theorems

Additional Reading:

- Khalil, Chapter 4
- Sastry, Chapter 5

Lyapunov Stability Theory

Khalil Chapter 4, Sastry Chapter 5

¹ Based on notes created by Murat Arcak and licensed under a Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Consider a time invariant system

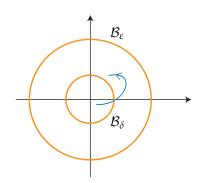
$$\dot{x} = f(x)$$

and assume equilibrium at x = 0, *i.e.* f(0) = 0. If the equilibrium of interest is $x^* \neq 0$, let $\tilde{x} = x - x^*$:

$$\dot{\tilde{x}} = f(x) = f(\tilde{x} + x^*) \triangleq \tilde{f}(\tilde{x}) \Longrightarrow \tilde{f}(0) = 0.$$

<u>Definition</u>: The equilibrium x = 0 is <u>stable</u> if for each $\varepsilon > 0$, there exists $\delta > 0$ such that

$$|x(0)| \le \delta \implies |x(t)| \le \varepsilon \quad \forall t \ge 0.$$
⁽¹⁾

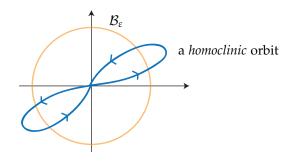


It is <u>unstable</u> if not stable.

Asymptotically stable if stable and $x(t) \rightarrow 0$ for all x(0) in a neighborhood of x = 0.

Globally asymptotically stable if stable and $x(t) \rightarrow 0$ for every x(0).

Note that $x(t) \rightarrow 0$ does not necessarily imply stability: one can construct an example where trajectories converge to the origin, but only after a large detour that violates the stability definition.



Lyapunov's Stability Theorem

1. Let *D* be an open, connected subset of \mathbb{R}^n that includes x = 0. If there exists a C^1 function $V : D \to \mathbb{R}$ such that

$$V(0) = 0$$
 and $V(x) > 0$ $\forall x \in D - \{0\}$ (positive definite)

and

$$\dot{V}(x) := \nabla V(x)^T f(x) \le 0 \quad \forall x \in D$$
 (negative semidefinite)

then x = 0 is stable.

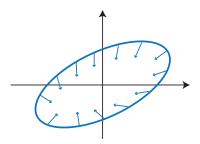
- 2. If $\dot{V}(x) < 0 \quad \forall x \in D \{0\}$ (negative definite) then x = 0 is asymptotically stable.
- 3. If, in addition, $D = \mathbb{R}^n$ and

 $|x| \rightarrow \infty \implies V(x) \rightarrow \infty$ (radially unbounded)

then x = 0 is globally asymptotically stable.

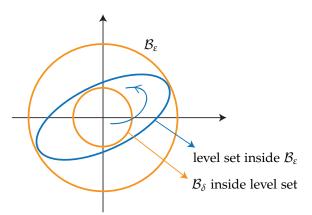
Sketch of the proof:

The sets $\Omega_c \triangleq \{x : V(x) \le c\}$ for constants *c* are called *level sets* of *V* and are positively invariant because $\nabla V(x)^T f(x) \le 0$.



Stability follows from this property: choose a level set inside the ball of radius ε , and a ball of radius δ inside this level set. Trajectories starting in \mathcal{B}_{δ} can't leave $\mathcal{B}_{\varepsilon}$ since they remain inside the level set.

Aleksandr Lyapunov (1857-1918)

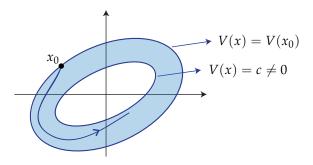


Asymptotic stability:

Since V(x(t)) is decreasing and bounded below by 0, we conclude

$$V(x(t)) \rightarrow c \geq 0$$

We will show c = 0 (*i.e.*, $x(t) \rightarrow 0$) by contradiction. Suppose $c \neq 0$:



Let

$$\gamma \triangleq \min_{\{x: \ c \leq V(x) \leq V(x_0)\}} - \dot{V}(x) > 0$$

where the maximum exists because it is evaluated over a bounded² set, and is positive because $\dot{V}(x) < 0$ away from x = 0. Then,

$$\dot{V}(x) \leq -\gamma \implies V(x(t)) \leq V(x_0) - \gamma t$$
,

which implies V(x(t)) < 0 for $t > \frac{V(x_0)}{\gamma}$ – a contradiction because $V \ge 0$. Therefore, c = 0 which implies $x(t) \to 0$.

Global asymptotic stability:

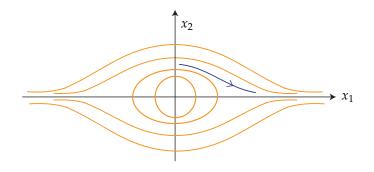
Why do we need radial unboundedness?

Example:

$$V(x) = \frac{x_1^2}{1 + x_1^2} + x_2^2 \tag{2}$$

Set $x_2 = 0$, let $x_1 \to \infty$: $V(x) \to 1$ (not radially unbounded). Then Ω_c is not a bounded set for $c \ge 1$:

² By positive definiteness of *V*, the level sets $\{x : V(x) \le \text{constant}\}\$ are bounded when the constant is sufficiently small. Since we are proving *local* asymptotic stability we can assume x_0 is close enough to the origin that the constant $V(x_0)$ is sufficiently small.



Therefore, $x_1(t)$ may grow unbounded while V(x(t)) is decreasing.

Finding Lyapunov Functions

Example:

$$\dot{x} = -g(x) \quad x \in \mathbb{R}, \ xg(x) > 0 \quad \forall x \neq 0$$
(3)

 $V(x) = \frac{1}{2}x^2$ is positive definite and radially unbounded. $\dot{V}(x) = -xg(x)$ is negative definite. Therefore x = 0 is globally

asymptotically stable.

If xg(x) > 0 only in $(-b, c) - \{0\}$, then take D = (-b, c)

 \implies x = 0 is locally asymptotically stable.

There are other equilibria where g(x) = 0, so we know global asymptotic stability is not possible.

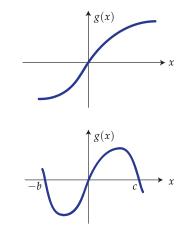
Example:

$$\dot{x}_1 = x_2 \dot{x}_2 = -ax_2 - g(x_1) \quad a \ge 0, \ xg(x) > 0 \quad \forall x \in (-b,c) - \{0\}$$

The choice $V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$ doesn't work because $\dot{V}(x)$ is sign indefinite (show this).

The function

$$V(x) = \int_0^{x_1} g(y) dy + \frac{1}{2} x_2^2$$



The pendulum is a special case with $g(x) = \sin(x)$.

is positive definite on $D = (-b, c) - \{0\}$ and

$$\dot{V}(x) = \frac{\partial V}{\partial x} f(x)$$

$$= \begin{bmatrix} \frac{\partial V}{\partial x_1} & \frac{\partial V}{\partial x_2} \end{bmatrix} f(x)$$

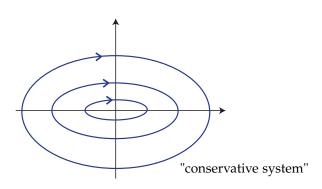
$$= \begin{bmatrix} g(x_1) & x_2 \end{bmatrix} f(x)$$

$$= g(x_1)x_2 - ax_2^2 - x_2g(x_1)$$

$$= -ax_2^2$$

is negative semidefinite \implies stable.

If a = 0, no asymptotic stability because $\dot{V}(x) = 0 \implies V(x(t)) = V(x(0))$.



If a > 0, (4) is asymptotically stable but the Lyapunov function above doesn't allow us to reach that conclusion. We need either another V with negative definite \dot{V} , or the Lasalle-Krasovskii Invariance Principle to be discussed in the next lecture.