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proofs of uniqueness and existence

Optional Reading

Overview:

• Prove uniqueness and existence theorem of ODEs

• Establish continuous dependence on initial conditions and parame-
ters

Additional Reading:

• Khalil, Chapter 3

• Sastry, Chapter 3.4

Existence and Uniqueness Theorems for ODEs
Khalil (Section 3.1), Sastry (Section 3.4)

ẋ = f (t, x) x(0) = x0 (1)

Theorem 1: f (t, x) locally Lipschitz in x and continuous in t
⇒ existence and uniqueness on some finite interval [0, δ].

Sketch of the proof: From the local Lipschitz assumption, we can
find r > 0 and L > 0 such that

| f (t, x)− f (t, y)| ≤ L|x − y| ∀x, y ∈ {x ∈ Rn : |x − x0| ≤ r}.

If x(t) is a solution, then:

x(t) = x0 +
∫ t

0
f (τ, x(τ))dτ︸ ︷︷ ︸

=: T(x)(t)

.

To apply the Contraction Mapping Theorem:

1. Choose δ small enough that T maps the following subset of
Cn[0, δ] to itself :

U = {x ∈ Cn[0, δ] : |x(t)− x0| ≤ r ∀t ∈ [0, δ]},

i.e.

|x(t)− x0| ≤ r ∀t ∈ [0, δ] ⇒ |T(x)(t)− x0| ≤ r ∀t ∈ [0, δ]. (2)

To find such a δ note that

T(x)(t)− x0 =
∫ t

0
f (τ, x(τ))dτ =

∫ t

0

(
f (τ, x(τ))− f (τ, x0) + f (τ, x0)

)
dτ

|T(x)(t)− x0| ≤
∫ δ

0
| f (τ, x(τ))− f (τ, x0)|dτ +

∫ δ

0
| f (τ, x0)|dτ

≤
∫ δ

0
L|x(τ)− x0|dτ +

∫ δ

0
hdτ where h is a bound on | f (τ, x0)|

≤ (Lr + h)δ.
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Thus, by choosing δ ≤ r
Lr+h we ensure that the implication (2)

holds.

2. Show that T is a contraction in U, i.e., there exists ρ < 1 s.t.

x, y ∈ U =⇒ |T(x)− T(y)|C ≤ ρ|x − y|C.

Note that, for all t ∈ [0, δ],

|T(x)(t)− T(y)(t)| =
∫ t

0
| f (τ, x(τ))− f (τ, y(τ))|dτ

≤ L
∫ t

0
|x(τ)− y(τ)|dτ

≤ Lδ︸︷︷︸
=:ρ

max
τ∈[0,δ]

|x(τ)− y(τ)| = ρ|x − y|C.

Therefore,

|T(x)− T(y)|C = max
t∈[0,δ]

|T(x)(t)− T(y)(t)| ≤ ρ|x − y|C

and ρ < 1 if δ ≤ r
Lr+h as prescribed above.

Theorem 2: f (t, x) globally Lipschitz in x uniformly2 in t, and contin- 2 same L works for all t

uous in t =⇒ existence and uniqueness on [0, ∞).

Proof: Choose a δ that doesn’t depend on x0 and apply Theorem 1 re-
peatedly to cover [0, ∞). This is possible because L works everywhere
and we can pick r as large as we wish. Indeed, for any δ < 1

L , we can
choose r large enough that δ ≤ r

Lr+h .

Q: Why can’t we do this in Theorem 1?

A: δ depends on x0 (no universal L) and x0 changes at the next itera-
tion. We can’t use the same δ in every iteration:

t f0 δ1 δ2 δ3

• The theorems above are sufficient only, and can be conservative:

Example: ẋ = −x3 is not globally Lipschitz but

x(t) = sgn(x0)

√
x2

0
1 + 2tx2

0

is defined on [0, ∞).
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Continuous Dependence on Initial Conditions and Parameters

Theorem 3: (Continuous dependence on initial conditions) Let
x(t), y(t) be two solutions of ẋ = f (t, x) starting from x0 and y0,
and remaining in a set with Lipschitz constant L on [0, τ]. Then, for
any ϵ > 0, there exists δ(ϵ, τ) > 0 such that

|x0 − y0| ≤ δ =⇒ |x(t)− y(t)| ≤ ϵ ∀t ∈ [0, τ].

• This conclusion does not hold on infinite time intervals (even if f
is globally Lipschitz).

Example: bistable system

x(t)

y(t)

x0 y0
• •

If ϵ is smaller than the distance between the two stable equilibria, no
choice of δ guarantees |x(t)− y(t)| ≤ ϵ ∀t ≥ 0.

• Theorem 3 also shows continuous dependence on parameter µ in
f (t, x, µ) if we rewrite the system equations as:

ẋ = f (t, x, µ)

µ̇ = 0
X =

[
x
µ

]
Ẋ = F(t, X) ≜

[
f (t, x, µ)

0

]
,

where µ appears as a state variable with initial condition µ(0) = µ.

Q: How do you reconcile bifurcations with continuous dependence
on parameters? We could pick two values of the bifurcation param-
eter arbitrarily close, but one below and one above the critical value,
thereby expecting a drastic difference in the solutions.

A: The two solutions are close in the short term (Theorem 3 holds on
finite time intervals); the drastic difference builds up over time.

Sensitivity to Parameters

Consider the system

ẋ = f (t, x, µ) x ∈ Rn, µ ∈ Rp (3)
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where µ is a vector of p parameters, and let ϕ(t, x0, µ) denote the
trajectories starting at the initial condition x0.

To determine to what extent this trajectory depends on the parame-
ters we define the n × p sensitivity matrix:

S(t, x0, µ) :=
∂ϕ(t, x0, µ)

∂µ
=

[
∂ϕ(t, x0, µ)

∂µ1
· · · ∂ϕ(t, x0, µ)

∂µp

]
, (4)

where each column is the sensitivity with respect to a particular
parameter.

To see how S(t, x0, µ) can be computed numerically, first note that
ϕ(t, x0, µ) satisfies the equation (3), that is,

∂ϕ(t, x0, µ)

∂t
= f (t, ϕ(t, x0, µ), µ).

Next, differentiate both sides with respect to µ:

∂2ϕ(t, x0, µ)

∂t∂µ
=

∂ f
∂x

(t, ϕ(t, x0, µ), µ)
∂ϕ(t, x0, µ)

∂µ
+

∂ f
∂µ

(t, ϕ(t, x0, µ), µ)

and use the definition of the sensitivity matrix to rewrite this as

∂S(t, x0, µ)

∂t
=

∂ f
∂x

(t, ϕ(t, x0, µ), µ)S(t, x0, µ) +
∂ f
∂µ

(t, ϕ(t, x0, µ), µ).

Thus, S can be computed by numerical integration of (3) simultane-
ously with

Ṡ =
∂ f
∂x

(t, x, µ)S +
∂ f
∂µ

(t, x, µ).

The initial condition for S is ∂x0
∂µ = 0, assuming that x0 is independent

of the parameters.

Example: For the harmonic oscillator

ẋ1 = −µx2

ẋ2 = µx1

we have
∂ f
∂x

=

[
0 −µ

µ 0

]
∂ f
∂µ

=

[
−x2

x1

]
.

Thus the sensitivity equation is

Ṡ =

[
0 −µ

µ 0

]
S +

[
−x2

x1

]
.
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