ME 6403 — Lecture 7b*
PROOFS OF UNIQUENESS AND EXISTENCE

Optional Reading

Overview:
* Prove uniqueness and existence theorem of ODEs

¢ Establish continuous dependence on initial conditions and parame-
ters

Additional Reading;:
¢ Khalil, Chapter 3
® Sastry, Chapter 3.4

Existence and Uniqueness Theorems for ODEs

%= f(tx) x(0)=x

Theorem 1: f(t,x) locally Lipschitz in x and continuous in ¢
= existence and uniqueness on some finite interval [0, J].

Sketch of the proof: From the local Lipschitz assumption, we can
find » > 0 and L > 0 such that

£(tx) = f(t,y)] < Lix—y| Vxy € {x R : x—xo| < 7).

If x(t) is a solution, then:
t
() = x +/O F(T,x(1))dr.

— T(x)(1
To apply the Contraction Mapping Theorem:

1. Choose J small enough that T maps the following subset of
C"[0, 9] to itself :

U= {xeC"0,d: |x(t) — x| <rVte 04}

ie.

[x(£) = xo| <r Vte[0,8] = |T(x)(t) —xo| <r Vte][0,5]. (2)

To find such a ¢ note that
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Khalil (Section 3.1), Sastry (Section 3.4)

T —x0 = [ fex@)e = [ (£ x(0) = f(r30) + £(730) )ar

T 0l < [ 1f(x() ~ fmxo)lde+ [ 1f(o)lir

é 6
< / Lix(t) — xoldT —|—/ hdt where h is a bound on |f(T, x¢)|
0 0

< (Lr+ h)s.
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Thus, by choosing § < % we ensure that the implication (2)
holds.

2. Show that T is a contraction in U, i.e., there exists p < 1 s.t.
xyel = |T(x) = T(y)lc < plx—ylc.

Note that, for all t € [0, 4],

T = T = [ F(x(0) = fley()lar

<1 [ Ix(r) — y(o)lae

< L& max [x(t) —y(7)| = plx — ylc.
7€(0,0]

Therefore,

IT(x) = T(y)lc = max [T(x)(t) = T(y) ()| < plx —ylc

and p < 1if § < 7 as prescribed above.
Theorem 2: f(t,x) globally Lipschitz in x uniformly? in f, and contin-
uous in t = existence and uniqueness on [0, ).

Proof: Choose a ¢ that doesn’t depend on xg and apply Theorem 1 re-
peatedly to cover [0, ). This is possible because L works everywhere

and we can pick r as large as we wish. Indeed, for any § < %, we can

_r

choose r large enough that § < .

Q: Why can’t we do this in Theorem 1?

A: 6 depends on xp (no universal L) and xg changes at the next itera-
tion. We can’t use the same J in every iteration:

Etststie—
0 51 52 (53 tf

¢ The theorems above are sufficient only, and can be conservative:

Example: ¥ = —x3 is not globally Lipschitz but
2
X

t) = —9

x(t) = sgn(zo)y /7 +26x3

is defined on [0, c0).
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2same L works for all ¢
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Continuous Dependence on Initial Conditions and Parameters

Theorem 3: (Continuous dependence on initial conditions) Let
x(t),y(t) be two solutions of x = f(t, x) starting from xo and yo,
and remaining in a set with Lipschitz constant L on [0, 7]. Then, for
any € > 0, there exists é(e, T) > 0 such that

|xo —yo| < 6= |x(t) —y(t)| <e Vte[0,T].

¢ This conclusion does not hold on infinite time intervals (even if f
is globally Lipschitz).

Example: bistable system

If € is smaller than the distance between the two stable equilibria, no
choice of § guarantees |x(f) —y(t)| <e Vt > 0.

® Theorem 3 also shows continuous dependence on parameter y in
f(t,x, ) if we rewrite the system equations as:

x=f(t,x,u)
=0

x
I3

where y appears as a state variable with initial condition p(0) = .

X = X =F(tX)=

Flt,x, ) ]
NGEE

Q: How do you reconcile bifurcations with continuous dependence
on parameters? We could pick two values of the bifurcation param-
eter arbitrarily close, but one below and one above the critical value,
thereby expecting a drastic difference in the solutions.

A: The two solutions are close in the short term (Theorem 3 holds on
finite time intervals); the drastic difference builds up over time.

Sensitivity to Parameters

Consider the system

x=f(t,x,pu) xeR",pueRF 3)

3
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where y is a vector of p parameters, and let ¢(t, xo, 1) denote the
trajectories starting at the initial condition xg.

To determine to what extent this trajectory depends on the parame-
ters we define the n x p sensitivity matrix:
09t xo, 1) _ [09(t, X0, 1) 9¢(t xo, 1)

S(t,xp, 1) : . ,
(t, x0, 1) o 3 o, (4)

where each column is the sensitivity with respect to a particular
parameter.

To see how S(t, x¢, it) can be computed numerically, first note that
¢(t, xo, i) satisfies the equation (3), that is,

W — F(t,p(t,x0, 1), 1)-

Next, differentiate both sides with respect to p:

R (t xo, 9 9 (t, xo, 0
Poet) = St 30,0, G2+ St 000,50,

and use the definition of the sensitivity matrix to rewrite this as

3S(t, xo, J i
w = %(t,(l)(t/ X0, #)/ ‘M)S(i', X0, ‘M) + ai(t,(f)(t, X(),‘u),]/l)-

Thus, S can be computed by numerical integration of (3) simultane-
ously with

- of of
S = g(t,x,y)s + a(t,x,y).

The initial condition for S is % = 0, assuming that xg is independent
of the parameters.

Example: For the harmonic oscillator

X1 = —ux

X = px

o |0 | of |
ox |p 0 o | x|
Thus the sensitivity equation is

s'_lo Bl
u 0

we have
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