ME 6402 — Lecture 7*
MATHEMATICAL BACKGROUND

January 28 2025

Overview:

¢ Existence and Uniqueness of ODEs
¢ Lipschitz continuity

* Normed linear spaces

¢ Fixed point theorems

¢ Contraction mappings

Additional Reading;:

® Sastry, Chapter 3

¢ Khalil, Chapter 3 and Appendix B

Clarification

A k-dimensional manifold in R” (1 < k < n) is informally the
solution to

7(x) =0
with 7 : R" — R"* sufficiently smooth. Last class, we said that
z = h(y) is a center manifold for the transformed system y € R¥ and
z € R"K, characterized as the solution to w(x) £ z(x) — h(y(x)) = 0.

Informally, we are constraining z € R"~¥ which allows us to only
consider the dynamics of y € R*.

Example:
The unit circle:
{x e R¥st.y(x) 2 x2 4+ %3 —1 =0}
is a one-dimensional manifold in R2.
The unit sphere:
n
{xeR"st.y(x) 2 Y 22 —1=0}
i=1

is a n — 1 dimensional manifold in R".

Mathematical Background

= f(x) x(0) =x0 )

Do solutions exist? Are they unique?

* Based on notes created by Murat
Arcak and licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

Sastry, Chapter 3
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e If f(-) is continuous (CY) then a solution exists, but C? is not suffi-

cient for uniqueness.

Example: ¥ = x3 with x(0)=0

oo slope
at x=0

¢ Sufficient condition for uniqueness: “Lipschitz continuity” (more
restrictive than C?)

[f(x) = f(y) < Llx —y| ()

Definition: f(-) is locally Lipschitz if every point x° has a neighbor-
hood where (2) holds for all x, y in this neighborhood for some L.

Example: ()% is NOT locally Lipschitz (due to oo slope)
(+)% is locally Lipschitz:

¥y = (P ay+y?) (x—y)
in any nbhd
of x%, we can
find L to upper
bound this
= [ —y’| < Llx —y]

e If f(-) is continuously differentiable (C'), then it is locally Lips-
chitz.

3 x2,¢%, etc.

Examples: x
The converse is not true: local Lipschitz # C!
Example: A

1f---- sat(x)
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Not differentiable at x = F1, but locally Lipschitz:

|sat(x) —sat(y)| < [x—y[  (L=1).

Definition continued: f(-) is globally Lipschitz if (2) holds Vx,y € R"
(i.e., the same L works everywhere).

Examples: sat(-) is globally Lipschitz. (+)3 is not globally Lipschitz:

A

— slope getting steeper

/ > X

* Suppose f(-) is Cl. Then it is globally Lipschitz iff % is bounded.

L= sup f'(x)]
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Preview of existence theorems:

1. f(+)is C® == existence of solution x(t) on finite interval [0, t )
2. f(-) locally Lipschitz = existence and uniqueness on [0, ).

3. f(-) globally Lipschitz = existence and uniqueness on [0, ).

Examples:

o % = x? (locally Lipschitz) admits unique solution on [0, t¢), but
tr < oo from Lecture 1 (finite escape).

e % = Ax globally Lipschitz, therefore no finite escape
|Ax — Ay| < L|lx—y| with L=|A]|

The rest of the lecture introduces concepts that are used in proving the
existence theorems mentioned above.

Normed Linear Spaces

Definition: X is a normed linear space if there exists a real-valued
norm | - | satisfying:

1. |x]| >0 VxeX, |x]=0iffx=0.

2. [x+y| < x|+ |y| Vx,y € X (triangle inequality)

3. |ax| =|a|-|x| Ya € Rand x € X.
Definition: A sequence {x;} in X is said to be a Cauchy sequence if

|x — x| — 0 as k,m — oo. (3)

Every convergent sequence is Cauchy. The converse is not true.

Definition: X is a Banach space if every Cauchy sequence converges
to an element in X.

All Euclidean spaces are Banach spaces.
Example:

C"[a, b]: the set of all continuous functions [a,b] — R" with norm:

|x[c = max |x(£)]
tela,b]

1. |x|c > 0and |x|c = 0iff x(t) = 0.
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2. |x+ylc = max [x(t) +y(t)| < max {|x(t)[ +[y(t)|} < [x[c + |ylc
tG[ﬂ,b] tE[a,b}

3. Ja-x|c = max || - |x(t)| = [a] - [x]c

€la,b]

It can be shown that C"[a, b] is a Banach space.

Fixed Point Theorems

T(x) =x 4)

Brouwer’s Theorem (Euclidean spaces):

If U is a closed, bounded, convex subset of a Euclidean space and
T : U — U is continuous, then T has a fixed point in U.

Schauder’s Theorem (Brouwer’s Thm — Banach spaces):

If U is a closed bounded convex subset of a Banach space X and

T : U — U is completely continuous®, then T has a fixed point in U. 2 continuous and for any bounded set
) ) B C U the closure of T(B) is compact
Contraction Mapping Theorem:

If U is a closed subset of a Banach space and T : U — U is such that
IT(x) —T(y) <plx—yl p<1 Vxyel

then T has a unique fixed point in U and the solutions of x,,.1 =

T(x,) converge to this fixed point from any xy € U.

Example: The logistic map (Lecture 5)
T(x) =rx(1—x) (5)

with0 < r < 4maps U = [0,1] to U. |[T'(x)| < r Vx € [0,1], so the
contraction property holds with p = r.

r/4

If r < 1, the contraction mapping theorem predicts a unique fixed
point that attracts all solutions starting in [0, 1].
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Proof steps for the Contraction Mapping Thm:

1. Show that {x,} formed by x,,.1 = T(x,) is a Cauchy sequence.
Since we are in a Banach space, this implies a limit x* exists.

2. Show that x* = T(x*).

3. Show that x* is unique.

Details of each step:

1. X1 = Xn| = [T(xn) = T(x0-1)] < |20 = Xp1]

< Pz‘xn—l - xn72|

< p"[x1 — xo].

Xntr — Xn| < [Xngr — Xpgprot| + 0+ [Xag1 — X
< ("4 ") — o
= "1+ ) - o

<p" |x1 — xo]

1-p

n
Sincelpfp — 0 as n — oo, we have |x, 4+, — x| — 0 as n — oo.

2. |x* = T(x*)| = |x" —xn+ T(xp—1) — T(x")|
< Jx% = x| 4 [T (1) = T(x)]
< |x* = x| + ol — x 1]
Since {x,} converges to x*, we can make this upper bound ar-
bitrarily small by choosing # sufficiently large. This means that
|[x* — T(x*)| =0, hence x* = T(x*).
3. Suppose y* = T(y") y* # x*.

* * |

X" =y | = |T(x") = T(y")| < plx" —y*| = x"=y".

Thus we have a contradiction.
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