ME 6402 – Lecture 7¹ MATHEMATICAL BACKGROUND January 28 2025

Overview:

- Existence and Uniqueness of ODEs
- Lipschitz continuity
- Normed linear spaces
- Fixed point theorems
- Contraction mappings
- Additional Reading:
- Sastry, Chapter 3
- Khalil, Chapter 3 and Appendix B

Clarification

A *k*-dimensional manifold in \mathbb{R}^n ($1 \le k < n$) is informally the solution to

$$\eta(x) = 0$$

with $\eta : \mathbb{R}^n \to \mathbb{R}^{n-k}$ sufficiently smooth. Last class, we said that z = h(y) is a *center manifold* for the transformed system $y \in \mathbb{R}^k$ and $z \in \mathbb{R}^{n-k}$, characterized as the solution to $w(x) \triangleq z(x) - h(y(x)) = 0$. Informally, we are constraining $z \in \mathbb{R}^{n-k}$ which allows us to only consider the dynamics of $y \in \mathbb{R}^k$.

Example:

The unit circle:

$${x \in \mathbb{R}^2 \text{ s.t. } \eta(x) \triangleq x_1^2 + x_2^2 - 1 = 0}$$

is a one-dimensional manifold in \mathbb{R}^2 .

The unit sphere:

$$\{x \in \mathbb{R}^n \text{ s.t. } \eta(x) \triangleq \sum_{i=1}^n x_i^2 - 1 = 0\}$$

is a n-1 dimensional manifold in \mathbb{R}^n .

Mathematical Background

$$\dot{x} = f(x) \quad x(0) = x_0$$
 (1)

Do solutions exist? Are they unique?

¹ Based on notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Sastry, Chapter 3

If *f*(·) is continuous (*C*⁰) then a solution exists, but *C*⁰ is not sufficient for uniqueness.

Example:
$$\dot{x} = x^{\frac{1}{3}}$$
 with $x(0) = 0$
 $x(t) \equiv 0, \ x(t) = \left(\frac{2}{3}t\right)^{\frac{3}{2}}$ are both solutions
 $x^{1/3}$
 $x = 0$

• Sufficient condition for uniqueness: "Lipschitz continuity" (more restrictive than *C*⁰)

$$|f(x) - f(y)| \le L|x - y| \tag{2}$$

<u>Definition</u>: $f(\cdot)$ is *locally Lipschitz* if every point x^0 has a neighborhood where (2) holds for all x, y in this neighborhood for some L. <u>Example</u>: $(\cdot)^{\frac{1}{3}}$ is NOT locally Lipschitz (due to ∞ slope)

 $(\cdot)^3$ is locally Lipschitz:

$$x^{3} - y^{3} = \underbrace{(x^{2} + xy + y^{2})}_{\text{in any nbhd}} (x - y)$$

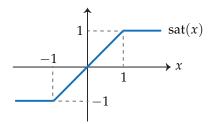
in any nbhd
of x^{0} , we can
find *L* to upper
bound this
 $\Rightarrow |x^{3} - y^{3}| \le L|x - y|$

• If $f(\cdot)$ is continuously differentiable (C^1), then it is locally Lipschitz.

Examples: x^3, x^2, e^x , etc.

The converse is not true: local Lipschitz $\neq C^1$

Example:

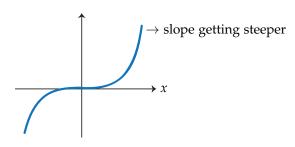


Not differentiable at $x = \pm 1$, but locally Lipschitz:

$$|\operatorname{sat}(x) - \operatorname{sat}(y)| \le |x - y|$$
 $(L = 1)$

<u>Definition continued</u>: $f(\cdot)$ is *globally Lipschitz* if (2) holds $\forall x, y \in \mathbb{R}^n$ (*i.e.*, the same *L* works everywhere).

Examples: sat(\cdot) is globally Lipschitz. (\cdot)³ is not globally Lipschitz:



• Suppose $f(\cdot)$ is C^1 . Then it is globally Lipschitz iff $\frac{\partial f}{\partial x}$ is bounded.

$$L = \sup_{x} |f'(x)|$$

Preview of existence theorems:

- 1. $f(\cdot)$ is $C^0 \implies$ existence of solution x(t) on finite interval $[0, t_f)$.
- 2. $f(\cdot)$ locally Lipschitz \implies existence and uniqueness on $[0, t_f)$.
- 3. $f(\cdot)$ globally Lipschitz \implies existence and uniqueness on $[0, \infty)$.

Examples:

• $\dot{x} = x^2$ (locally Lipschitz) admits unique solution on $[0, t_f)$, but $t_f < \infty$ from Lecture 1 (finite escape).

• $\dot{x} = Ax$ globally Lipschitz, therefore no finite escape

$$|Ax - Ay| \le L|x - y|$$
 with $L = ||A||$

The rest of the lecture introduces concepts that are used in proving the existence theorems mentioned above.

Normed Linear Spaces

<u>Definition</u>: X is a normed linear space if there exists a real-valued norm $|\cdot|$ satisfying:

- 1. $|x| \ge 0 \quad \forall x \in \mathbb{X}, \ |x| = 0 \text{ iff } x = 0.$
- 2. $|x + y| \le |x| + |y| \quad \forall x, y \in \mathbb{X}$ (triangle inequality)
- 3. $|\alpha x| = |\alpha| \cdot |x| \quad \forall \alpha \in \mathbb{R} \text{ and } x \in \mathbb{X}.$

<u>Definition</u>: A sequence $\{x_k\}$ in X is said to be a Cauchy sequence if

$$|x_k - x_m| \to 0 \text{ as } k, m \to \infty.$$
 (3)

Every convergent sequence is Cauchy. The converse is not true.

<u>Definition</u>: X is a Banach space if every Cauchy sequence converges to an element in X.

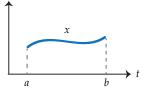
All Euclidean spaces are Banach spaces.

Example:

 $C^{n}[a,b]$: the set of all continuous functions $[a,b] \to \mathbb{R}^{n}$ with norm:

$$|x|_C = \max_{t \in [a,b]} |x(t)|$$

1. $|x|_C \ge 0$ and $|x|_C = 0$ iff $x(t) \equiv 0$.



2.
$$|x + y|_C = \max_{t \in [a,b]} |x(t) + y(t)| \le \max_{t \in [a,b]} \{|x(t)| + |y(t)|\} \le |x|_C + |y|_C$$

3. $|\alpha \cdot x|_C = \max_{t \in [a,b]} |\alpha| \cdot |x(t)| = |\alpha| \cdot |x|_C$

It can be shown that $C^{n}[a, b]$ is a Banach space.

Fixed Point Theorems

$$T(x) = x \tag{4}$$

Brouwer's Theorem (Euclidean spaces):

If *U* is a closed, bounded, convex subset of a Euclidean space and $T: U \rightarrow U$ is continuous, then *T* has a fixed point in *U*.

<u>Schauder's Theorem</u> (Brouwer's Thm \rightarrow Banach spaces):

If *U* is a closed bounded convex subset of a Banach space X and $T: U \rightarrow U$ is *completely continuous*², then *T* has a fixed point in *U*.

Contraction Mapping Theorem:

If *U* is a closed subset of a Banach space and $T: U \rightarrow U$ is such that

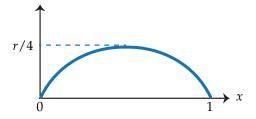
$$|T(x) - T(y)| \le \rho |x - y| \ \rho < 1 \ \forall x, y \in U$$

then *T* has a unique fixed point in *U* and the solutions of $x_{n+1} = T(x_n)$ converge to this fixed point from any $x_0 \in U$.

Example: The logistic map (Lecture 5)

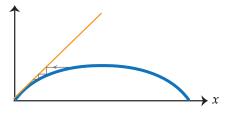
$$T(x) = rx(1-x) \tag{5}$$

with $0 \le r \le 4$ maps U = [0,1] to U. $|T'(x)| \le r \quad \forall x \in [0,1]$, so the contraction property holds with $\rho = r$.



If r < 1, the contraction mapping theorem predicts a unique fixed point that attracts all solutions starting in [0, 1].

² continuous and for any bounded set $B \subseteq U$ the closure of T(B) is compact



Proof steps for the Contraction Mapping Thm:

- 1. Show that $\{x_n\}$ formed by $x_{n+1} = T(x_n)$ is a Cauchy sequence. Since we are in a Banach space, this implies a limit x^* exists.
- 2. Show that $x^* = T(x^*)$.
- 3. Show that x^* is unique.

Details of each step:

1.
$$|x_{n+1} - x_n| = |T(x_n) - T(x_{n-1})| \le \rho |x_n - x_{n-1}|$$
$$\le \rho^2 |x_{n-1} - x_{n-2}|$$
$$\vdots$$
$$\le \rho^n |x_1 - x_0|.$$
$$|x_{n+r} - x_n| \le |x_{n+r} - x_{n+r-1}| + \dots + |x_{n+1} - x_n|$$
$$\le (\rho^{n+r} + \dots + \rho^n) |x_1 - x_0|$$
$$= \rho^n (1 + \dots + \rho^r) |x_1 - x_0|$$
$$\le \rho^n \frac{1}{1 - \rho} |x_1 - x_0|$$

Since $\frac{\rho^n}{1-\rho} \to 0$ as $n \to \infty$, we have $|x_{n+r} - x_n| \to 0$ as $n \to \infty$.

2.

$$|x^* - T(x^*)| = |x^* - x_n + T(x_{n-1}) - T(x^*)|$$

$$\leq |x^* - x_n| + |T(x_{n-1}) - T(x^*)|$$

$$\leq |x^* - x_n| + \rho |x^* - x_{n-1}|.$$

Since $\{x_n\}$ converges to x^* , we can make this upper bound arbitrarily small by choosing *n* sufficiently large. This means that $|x^* - T(x^*)| = 0$, hence $x^* = T(x^*)$.

3. Suppose $y^* = T(y^*) \ y^* \neq x^*$.

$$|x^* - y^*| = |T(x^*) - T(y^*)| \le \rho |x^* - y^*| \implies x^* = y^*.$$

Thus we have a contradiction.