ME 6402 — Lecture 6 *

CENTER MANIFOLD THEORY AND CHAOS IN DISCRETE-
TIME

January 23 2025

Overview:

¢ Center Manifold Theory
¢ Discrete-time Systems

¢ Chaos in Discrete-time
Additional Reading;:

¢ Khalil, Chapter 8.1

e Sastry, Chapter 7.6.1

Motivation for Center Manifold Theory

Remark: Center manifold theory is used to study stability of equilib-
rium points when linearization fails.

Let x = 0 be an equilibrium point for the
nonlinear system

1= f(x)

where f : D — R" is continuously differentiable and D is a neighbor-
hood of the origin. Let

d
A=) st
Then,
1. x* = 0 is asymptotically stable if *(A;) < 0 for all eigenvalues of
A.
2. x* = 0 is unstable if R(A;) > 0 for some eigenvalue of A.

Note: If A has some eigenvalues with zero real parts and the rest
have negative real parts, then the linearization fails.

Let’s assume that A has k eigenvalues with zero real parts and m =
n — k eigenvalues with negative real parts:

® One option: analyze a n-th order nonlinear system

® Second option: analyze a lower order nonlinear system (center
manifold theory will dictate that this order is the number of eigen-
values such that R(A;) = 0)

* Based on notes created by Murat
Arcak and licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

Khalil (Section 8.1), Sastry (Section
7.6.1)
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Mathematical Preliminaries

A k-dimensional manifold in R” (1 < k < n) is informally the
solution to

n(x) =0
with 77 : R" — R"¥ sufficiently smooth.
Example:
The unit circle:
{x € R?st. x] +25 =1}
is a one-dimensional manifold in R?.

The unit sphere:

n
{xeR"st. ) x7 =1}
i=1
is a n — 1 dimensional manifold in R".

A manifold is an invariant manifold if:
n(x(0))=0 = #5(x(t))=0 Vie[0,h) CR

where [0, ) is any time interval over which x(t) is defined.

Center Manifold Theory
r=f(x) f(0)=0 (1)
Suppose A = % has k eigenvalues will zero real parts, and
x=0

m = n — k eigenvalues with negative real parts.

Define [ Y ] = Tx such that
z

A 0
0 A

TAT ! =

where the eigenvalues of A; have zero real parts and the eigenvalues
of A, have negative real parts.

Rewrite ¥ = f(x) in the new coordinates:

y=Ay+81(y,2)

. (2)
z= Az +&(y.2)

2i(0,0) =0, %(0,0) = 0, %(0,0) = 0,i = 1,2.

Theorem 1: There exists an invariant manifold z = h(y) defined in a

neighborhood of the origin such that
oh
h(0) =0 @(0) =0.
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g1 and g» inheret the properties of f in
the equation:

¥ = f(x) = Ax+ f(x)

with f(x) = f(x) = 5 (x) st xco,
which has the properties f(0) = 0 and

Ty=0

2
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(4| 324
e A

.

z = h(y) is called a center manifold in this case.
Reduced System: y = A1y + g1 (y, h(y)) y € RF
Theorem 2: If y = 0 is asymptotically stable (resp., unstable) for the

reduced system, then x = 0 is asymptotically stable (resp., unstable)
for the full system x = f(x).

Characterizing the Center Manifold

Define w = z — h(y) and note that it satisfies
w=1— 2y
oh
= Azt oz -5 (A +81(y,2))-
The invariance of z = h(y) means that w = 0 implies w = 0. Thus, the
expression above must vanish when we substitute z = h(y):

Ah(y) + 24, 1(v)) — 51 (Ary + 1)) =0

To find h(y) solve this partial differential equation for & as a function
ony.

If the exact solution is unavailable, an approximation might be suffi-
cient.

For scalar y, expand h(y) as
h(y) = hay? + -+ + hpy? +O(y"*)

where iy = hy = 0 because h(0) = %(O) = 0. The notation O(yP*1)

refers to the higher order terms of power p 4+ 1 and above.

Example (8.2 from Khalil):

y=yz
t=—z+ay® a#0
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This is of the form (2) with ¢1(y,z) = yz, £2(y,z) = ay?, Ay = —1.
Thus h(y) must satisfy

o
—h(y) +ay* — @yh(y) =0.

Try h(y) = hay® + O(y):
0= —hy* + O(y°) +ay? — (2hay + O(y*))y(lay* + O(y*))
= (a—h)y* +0(y*)
—hh=a
Reduced System: y = y(ay? + O(y%)) = ay® + O(y*).
If a < 0, the full systems is asymptotically stable. If a > 0 unstable.

Discrete-Time Models and a Chaos Example

CT: x(t) = f(x(t)) DT: xy41 = f(xn) n=0,1,2,...
=0 f(x*) = x* (“fixed point”)

C V4

RA(A) <0 where A2 %‘x |Aj(A)] <1 where A2 %

=x* x=x*

f'(x*) < 0 for first order system |f'(x*)| <1 for first order system

These criteria are inconclusive if the respective inequality is not strict,
but for first order systems we can determine stability graphically:

Cobweb Diagrams for First Order Discrete-Time Systems

Example: x,1 = sin(x,) has unique fixed point at 0. Stability test
above inconclusive since f'(0) = 1. However, the "cobweb" diagram
below illustrates the convergence of iterations to 0:
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y=x

In discrete time, even first order systems can exhibit oscillations:

f(x) Xy

Detecting Cycles Analytically

flp)=q fl@=pr = f(fp))=p f(f(9) =49

For the existence of a period-2 cycle, the map f(f(-)) must have two
fixed points in addition to the fixed points of f(-).

Period-3 cycles: fixed points of f(f(f(+))).

Chaos in a Discrete Time Logistic Growth Model

Xpp1 = 11— xn)xy (3)

Range of interest: 0 < x <1 (x, >1 = x,11 <0)

r/4

We will study the range 0 < r < 4 so that f(x) = r(1 — x)x maps [0, 1]
onto itself.



x*=0 and

Fixed points: x = r(1 — =
ixed points: x =r(1—x)x {x*zl—}ifr>l.

r < 1: x* = 0 unique and stable fixed point

0 1

r > 1: x = 0 unstable because f'(0) =r > 1

1
0 1-1 1

Note that a transcritical bifurcation occurred at » = 1, creating the
new equilibrium

xf=1-=.
7

Evaluate its stability using f/(x*) =r(1 —2x*) =2 —r.

r<3 = |f'(x*)] <1 (stable)
r>3 = |f'(x*)] > 1 (unstable).

At r = 3, a period-2 cycle is born:

x = f(f(x))
=r(1=f(x))f(x)
=r(1—r(1—x)x)r(1 —x)x
= r?x(1—x)(1 —r+4rx —rx?)

0=r’x(1—x)(1—r+rx—rx*) —x

Factor out x and (x — 1+ %), find the roots of the quotient:

_r+1F(r=3)(r+1)
2r

p.q
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A ‘l/ =X

A 4

This period-2 cycle is stable when r < 1+ /6 = 3.4494:
d / / ! ! 2
G| = FEENF () = F(p)f () = 4+2r 7
x=p
l4+2r—7?| <1 = 3<r<1++6=34494

At r = 3.4494, a period-4 cycle is born!

“period doubling bifurcations”

0 1 3 344

r =3 period-2 cycle born
rp = 3.4494  period-4 cycle born
r3 =3.544  period-8 cycle born
r4 =3.564  period-16 cycle born

Too = 3.5699

After r > r, chaotic behavior for a window of r, followed by win-
dows of periodic behavior (e.g., period-3 cycle around r = 3.83).

Below is the cobweb diagram for » = 3.9 which is in the chaotic
regime:
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