ME 6402 — Lecture 3*

PHASE POTRAITS OF NONLINEAR SYSTEMS
NEAR HYPERBOLIC EQUILIBRIA

January 14 2025

Overview:

¢ Hartman-Grobman Theorem

¢ Bendixson’s Theorem

¢ Invariant Sets
Additional Reading;:
¢ Khalil, Chapter 2

Review: Phase Portraits of Linear Systems: % = Ax

Depending on the eigenvalues of A, there are two main forms for

] =T 1AT:

1. Distinct real eigenvalues

In z = T~ x coordinates:

T 1AT = [

A0

Z1 = AMz1, Zo = Ap2o.

0 A

The equilibrium is called a node when A; and A, have the same
sign (stable node when negative and unstable when positive). It is
called a saddle point when A1 and A, have opposite signs.
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2. Complex eigenvalues: A1, = a F jp

r-lar= | * P
B«
21 = az1 — Pzo . F=ar
polar coordinates .
Zp = azp + Bz 0=p
Vi)
. (D)=
unstable \-//
focus center
a <0 a>0 a=0

The phase portraits above assume f > 0 so that the direction of
rotation is counter-clockwise: 6§ = 8 > 0.

Phase Portraits of Nonlinear Systems Near Hyperbolic Equilibria

Definition: Hyperbolic Equilibrium. Linearization has no eigenvalues
on the imaginary axis

Phase portraits of nonlinear systems near hyperbolic equilibria are
qualitatively similar to the phase portraits of their linearization. Ac-
cording to the Hartman-Grobman Theorem (below) a “continuous
deformation” maps one phase portrait to the other.

If x* is a hyperbolic equilibrium of X = f(x),x € R", then there exists
a homeomorphism® z = h(x) defined in a neighborhood of x* that

maps trajectories of ¥ = f(x) to those of z = Az where A £ % e

The hyperbolicity condition can’t be removed:
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?a continuous map with a continuous



Example:
X = —xp + axy (¥} + x3) i =ar’

Xy = X1+ axy(x3 + x3) =1

o —1
e |10

There is no continuous deformation that maps the phase portrait of

. _
x* =(0,0) A_ax

the linearization to that of the original nonlinear model:

x = Ax x=f(x)

o
!
|

Periodic Orbits in the Plane

For a time-invariant planar system

X1 = fi(x1,x2) X2 = fo(x1,x2),

itV f(x) = % + % is not identically zero and does not change

sign in a simply connected region D, then there are no periodic orbits
lying entirely in D.

Proof: By contradiction. Suppose a periodic orbit | lies in D. Let S
denote the region enclosed by | and 7(x) the normal vector to | at x.
Then f(x) - n(x) = 0 for all x € J. By the Divergence Theorem:

/]f(X) Gl = [[ V- fx

Example:

X = X

—(sz—i-xl—x:f—i-x%xz 6>0

_9fi  9fr o
78x1+ax27x1 0

X2
V- f(x)

Therefore, no periodic orbit can lie entirely in the region x; < — Ve
where V - f(x) > 0,0or =4 < x; < /6 where V- f(x) < 0, or
x; > /6 where V - f(x) > 0.
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This can be equivalently written in
vector form as

—xy + axl(x% + x%)
x1 + axa(x% + x3)




not possible: X2

X1

possible:

X1

Invariant Sets

Notation: ¢(t,xp) denotes a trajectory of X = f(x) with initial condi-
tion x(0) = xo.

Definition: A set M C IR" is positively (negatively) invariant if, for
each xo € M, ¢(t,x9) € M forall t >0 (1 < 0).

n(x)

If f(x)-n(x) <0 on the boundary then M is positively invariant.

Example 1: A predator-prey model (Lotka-Volterra equations)

x=(a—by)x  Prey (exponential growth when y = 0)
y=(cx—4d)y Predator (exponential decay when x = 0)
a,b,c,d, >0
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The nonnegative quadrant is invariant:

. ax 0
(x-axis:) ol 11l =
(y-axis:) _(;y . _01 =0

Phase Diagram of Predator-Prey Model
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Example 2: (Similar to Example 2.8 in Khalil)

: 2 2

X1 = x1 +x2 — x1(x] + x3)

3 2 2
Xy = —2x1 + xp — x2(x] + x3)

Show that B, £ {x|x7 + x5 < r?} is positively invariant for sufficiently

large r.

X1+ x — x1(x3 4 x3)
—2x1 4 x3 — xp(x% 4 x3)

f(x)-n(x) =

X1
X2

= —x1x + (¥] + 23) — (x] + 23)?

Next, we can use the inequality

[2x125| < x% + x%,

S 2
a1 — 27 (2 + 23) —220120 + 07 — x5 (x] + x3)

This is a special case of the Cauchy-

Schwarz inequality: |{a,b)| < ||a||||b]|

with a = (xq,x2) and b = (x2,x1):
[x120 + xox7| < 3/ (22 + x3) (x2 4 x3)

[2x125] < x% + x%
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to arrive at the final condition:

1 x
F)n(x) < 503 +3) + (3 +3) — (F + 32 ey 0= ]
3 2 4
= —r" —r
. 1
X
Therefore, f(x) - n(x) < 3r2 —r* <0if 12 >

3
5

N
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