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Overview:

• Hartman-Grobman Theorem

• Bendixson’s Theorem

• Invariant Sets

Additional Reading:

• Khalil, Chapter 2

Review: Phase Portraits of Linear Systems: ẋ = Ax

Depending on the eigenvalues of A, there are two main forms for
J = T−1 AT:

1. Distinct real eigenvalues

T−1 AT =

[
λ1 0
0 λ2

]

In z = T−1x coordinates:

ż1 = λ1z1, ż2 = λ2z2.

The equilibrium is called a node when λ1 and λ2 have the same
sign (stable node when negative and unstable when positive). It is
called a saddle point when λ1 and λ2 have opposite signs.
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Planar (Second Order) Dynamical Systems
Chapter 2 in both Sastry and Khalil

Phase Portraits of Linear Systems: ẋ = Ax

• Distinct real eigenvalues

T�1 AT =

"
l1 0
0 l2

#

In z = T�1x coordinates:

ż1 = l1z1, ż2 = l2z2.

The equilibrium is called a node when l1 and l2 have the same
sign (stable node when negative and unstable when positive). It is
called a saddle point when l1 and l2 have opposite signs.

z1z1z1

z2z2z2

l1 < l2 < 0 l1 > l2 > 0 l2 < 0 < l1

stable
node

unstable
node saddle

• Complex eigenvalues: l1,2 = a ⌥ jb

T�1 AT =

"
a �b

b a

#

ż1 = az1 � bz2

ż2 = az2 + bz1
! polar coordinates !

ṙ = ar

q̇ = b

z1z1z1

z2z2z2

stable
focus

unstable
focus center

a < 0 a > 0 a = 0

The phase portraits above assume b > 0 so that the direction of
rotation is counter-clockwise: q̇ = b > 0.
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2. Complex eigenvalues: λ1,2 = α ∓ jβ

T−1 AT =

[
α −β

β α

]

ż1 = αz1 − βz2

ż2 = αz2 + βz1
→ polar coordinates →

ṙ = αr

θ̇ = β

z1z1z1

z2z2z2

stable
focus

unstable
focus center

α < 0 α > 0 α = 0

The phase portraits above assume β > 0 so that the direction of
rotation is counter-clockwise: θ̇ = β > 0.

Phase Portraits of Nonlinear Systems Near Hyperbolic Equilibria

Definition: Hyperbolic Equilibrium. Linearization has no eigenvalues
on the imaginary axis

Phase portraits of nonlinear systems near hyperbolic equilibria are
qualitatively similar to the phase portraits of their linearization. Ac-
cording to the Hartman-Grobman Theorem (below) a “continuous
deformation” maps one phase portrait to the other.

x∗
h

Theorem: Hartman-Grobman Theorem.
If x∗ is a hyperbolic equilibrium of ẋ = f (x), x ∈ Rn, then there exists
a homeomorphism2 z = h(x) defined in a neighborhood of x∗ that 2 a continuous map with a continuous

inversemaps trajectories of ẋ = f (x) to those of ż = Az where A ≜ ∂ f
∂x

∣∣∣
x=x∗

.

The hyperbolicity condition can’t be removed:
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Example: This can be equivalently written in
vector form as

ẋ =

[−x2 + ax1(x2
1 + x2

2)
x1 + ax2(x2

1 + x2
2)

]ẋ1 = −x2 + ax1(x2
1 + x2

2)

ẋ2 = x1 + ax2(x2
1 + x2

2)
=⇒

ṙ = ar3

θ̇ = 1

x∗ = (0, 0) A =
∂ f
∂x

∣∣∣∣
x=x∗

=

[
0 −1
1 0

]

There is no continuous deformation that maps the phase portrait of
the linearization to that of the original nonlinear model:

(a > 0)
ẋ = Ax ẋ = f (x)

Periodic Orbits in the Plane

Theorem: Bendixson’s Theorem. For a time-invariant planar system

ẋ1 = f1(x1, x2) ẋ2 = f2(x1, x2),

if ∇ · f (x) = ∂ f1
∂x1

+ ∂ f2
∂x2

is not identically zero and does not change
sign in a simply connected region D, then there are no periodic orbits
lying entirely in D.

Proof: By contradiction. Suppose a periodic orbit J lies in D. Let S
denote the region enclosed by J and n(x) the normal vector to J at x.
Then f (x) · n(x) = 0 for all x ∈ J. By the Divergence Theorem:

J
S

• x

f (x) n(x)

∫

J
f (x) · n(x)dℓ

︸ ︷︷ ︸
= 0

=
∫∫

S
∇ · f (x)dx

︸ ︷︷ ︸
̸= 0

.

Example:

ẋ1 = x2

ẋ2 = −δx2 + x1 − x3
1 + x2

1x2 δ > 0

∇ · f (x) =
∂ f1

∂x1
+

∂ f2

∂x2
= x2

1 − δ

Therefore, no periodic orbit can lie entirely in the region x1 ≤ −
√

δ

where ∇ · f (x) ≥ 0, or −
√

δ ≤ x1 ≤
√

δ where ∇ · f (x) ≤ 0, or
x1 ≥

√
δ where ∇ · f (x) ≥ 0.
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x1 = −
√

δ

x1 = −
√

δ

x1 =
√

δ

x1 =
√

δ

x1

x1

x2

x2

not possible:

possible:

Invariant Sets

Notation: φ(t, x0) denotes a trajectory of ẋ = f (x) with initial condi-
tion x(0) = x0.

Definition: A set M ⊂ Rn is positively (negatively) invariant if, for
each x0 ∈ M, φ(t, x0) ∈ M for all t ≥ 0 (t ≤ 0).

n(x)

f (x)M

If f (x) · n(x) ≤ 0 on the boundary then M is positively invariant.

Example 1: A predator-prey model (Lotka-Volterra equations)

ẋ = (a − by)x Prey (exponential growth when y = 0)

ẏ = (cx − d)y Predator (exponential decay when x = 0)

a, b, c, d,> 0
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The nonnegative quadrant is invariant:

(x-axis:)

[
ax
0

]
·
[

0
−1

]
= 0

(y-axis:)

[
0

−dy

]
·
[
−1
0

]
= 0
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Phase Diagram of Predator-Prey Model

Example 2: (Similar to Example 2.8 in Khalil)

ẋ1 = x1 + x2 − x1(x2
1 + x2

2)

ẋ2 = −2x1 + x2 − x2(x2
1 + x2

2)

Show that Br ≜ {x|x2
1 + x2

2 ≤ r2} is positively invariant for sufficiently
large r.

f (x) · n(x) =

[
x1 + x2 − x1(x2

1 + x2
2)

−2x1 + x2 − x2(x2
1 + x2

2)

]
·
[

x1

x2

]

= x2
1 + x1x2 − x2

1(x2
1 + x2

2)−2x1x2 + x2
2 − x2

2(x2
1 + x2

2)

= −x1x2 + (x2
1 + x2

2)− (x2
1 + x2

2)
2

Next, we can use the inequality This is a special case of the Cauchy-
Schwarz inequality: |⟨a, b⟩| ≤ ∥a∥∥b∥
with a = (x1, x2) and b = (x2, x1):

|x1x2 + x2x1| ≤
√
(x2

1 + x2
2)(x2

1 + x2
2)

|2x1x2| ≤ x2
1 + x2

2

|2x1x2| ≤ x2
1 + x2

2,
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to arrive at the final condition:

f (x) · n(x) ≤ 1
2
(x2

1 + x2
2) + (x2

1 + x2
2)− (x2

1 + x2
2)

2

=
3
2

r2 − r4

x1

x2
n(x)=

[
x1
x2

]

f (x)
Therefore, f (x) · n(x) ≤ 3

2 r2 − r4 ≤ 0 if r2 ≥ 3
2 .
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