ME 6402 — Lecture 27
FINAL EXAM REVIEW

April 17 2025

Overview:

* Backstepping

e Feedback Linearization

¢ Normal Form and Zero Dynamics

¢ Control Lyapunov functions

e Control Barrier functions

Additional Reading;:

¢ Khalil Chapter 14.3 (Backstepping)

Khalil Chapter 13 (Feedback Linearization of SISO Systems)

¢ Sastry Chapter 9.3 (Feedback Linearization of MIMO Systems)
* E. Sontag, 1983 (Control Lyapunov Functions)

e A. Ames et al. 2019 (Control Barrier Functions)

Backstepping (Lecture 13)

Backstepping is a specific control design technique for a certain class
of systems. The basic idea of backstepping is that we can stabilize the
system

i1 = F(21) + G(z1)22

Ty =u
through the coordinate shift = = 2, — k(x1), where k(z1) is a function
that would result in stable dynamics for the x; subsystem. This effec-
tively shifts the equilibrium point for our ; system and allows us to
render it stable through the coordinate shift. Then, we can stabilize

the remaining &, dynamics by choosing u such that 2 is also a stable
subsystem.

An example of backstepping is the following (Example 14.8 from
Khalil):

Example 1: Consider the system
T = x% — x? + x7
Ty =1
The #; dynamics can be stabilized through the “control law”

xo = k(z1) = —2% — 1y
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Applying this control would yield the system:

Zfl = —lL’% — I
which is stable. Notably, the —23 term provides an additional damp-
ing stabilization term compared to only having @7 = —z7.

Next, we will shift our system to effectively enforce this control law
when we drive the system to zero. This is done through the coordi-
nate shift z = zy — k(21), which results in the shifted system:

#1 =27 — ) + (2 + k(1)) = =] —21 + 2
i=u+k

where k = (=221 — 1)iy = — (221 + 1)(—23 — 21 + 2).

The main idea of backstepping is that we can then prove stability of
the 21 dynamics using the Lyapunov function V' (z1) = %x% and then
construct an augmented Lyapunov function to construct a control law
that would also stabilize the z, dynamics:

1
Vi=V(n)+ EZZ
This results in the control law:
u—fc—a—vG(x )— K=z
n 8x1 !

For our example, % = 7 and G(z1) = 1. Taking K = 1 for

simplicity, we get the final control law:
G
u-k—a—le(m)—z

= Qe+ 1) (23 -z +2)—a—2

If instead, we had had a system where &, was control affine, the
approach would be mostly the same. A specific example is as follows.

Example 2:

T = x% — CC‘% + x7

Ty = xp + 2u
We can convert the form to our previous form using the same ap-
proach as with input-output linearization:

u:%(—xz—o—v)

This results in the system:
T = x% - a:“;’ + x3

Ty =
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Thus, following the same procedure as in Example 1, we would ob-
tain:
v=—2x +1) (2} —x1 +2) —x— 2

Plugging this back into our control law, we get:

u= (fx27(2x1+1)(7x:{’7x1+z)fxlfz)

While it’s possible to recursively perform backstepping across
multiple states, this typically results in very ugly and complex con-
trol laws and thus will likely not appear on the final exam.

Feedback Linearization (Lectures 16-19)

Relative Degree

Definition: Relative Degree for SISO. A SISO system has relative de-
gree r if, in a neighborhood of the equilibrium:

Lol 'h(z) =0, i=12,...,r—1

LgL " h(w) #0

Informally, this is the same as saying that “A SISO system has rela-
tive degree 7 if the input does not appear until the r-th derivative of
the output h(x)”.

Definition: Relative Degree for MIMO. A MIMO system has relative
degree r; for each output h;(z) if the i-th output needs to be differen-
tiated r; times before some input appears.

Definition: Vector Relative Degree for MIMO. A MIMO system has vec-
tor relative degree r = {r1,...,ry, } if the matrix A(z) is nonsingular:

Lo L h(z) oo L L h(w)
Ax) = : . :
Lo Ly hin () -+ Lg, L i (2)

Example 3: Consider the system:
T, = X1
Typ=xr+u
Y=o

The system does not have a well-defined relative degree because
y = &1 = 1 = y. Thus the input v will never appear.



Example 4: Consider the system:

The system has relative degree 2 because:
Y =iy =13
=3 =123t U
Notably, the relative degree is well-defined for all » € R5.

Example 5: Consider the system (it is the controlled van der Pol
equation):

T1 = Tp
ip = —xy +e(1—a3)xy +u
Yy =2
The system has relative degree 1 because y = @ = —x1 + (1 —

23)xp + u. This is also well-defined for all z € R2.

Example 6: Consider the MIMO system:

T = COS(CC3)U1

Ty = sin(x3)u1

T3 = Uy
Yy =
Y2 = 12

The system has relative degree v = r, = 1 because
1 = i = cos(x3)ug
o = dp = sin(z3)ug

To check if the system has a valid vector relative degree, we need to
check if the matrix A(z) is nonsingular. Explicitly, this matrix is:

cos(z3) O]

A=
sin(xz3) 0

This matrix is NOT nonsingular, so it does not have a valid vector
relative degree. This means that we could not perform feedback
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linearization on this system. Instead, we would need to perform
dynamic extension:

i1 = x4 cos(x3)

Ty = X4 sin(xg)

T3 = up
T4 = Uy
N =
Y2 = 22

This would result in each output having relative degree 2, with the
derivatives being:

Y| =T1 =4 COS(.’L‘3)

i1 = uq cos(x3) — zg sin(az)up

o = dp = mg sin(x3)
ijp = uq sin(x3) + x4 cos(x3)uy
Thus, the A matrix is now:

cos(x3) —mysin(z3)

sin(z3)  x4cos(x3)

This matrix is only singular when z4 = 0, so for any state such that
x4 # 0, the system has a valid vector relative degree r = {2,2}.

Input-Output Linearization

If a system has a well-defined realtive degree (or a valid vector rel-
ative degree for MIMO systems) then it is input-output linearizable.
Explicitly, this feedback linearizing control law is:

u= Lngllh(x) (f thiz) + v)

or

u=A"Y(=B+w)

You can always think of this as the latter if you rearrange the system
to be in the form:
y") = B+ Au

By selecting the auxiliary control law

v=—lky—kyy— -~y (1)
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we can transform our input-output system to be:

, o 1 0 0
Y o 0 1 0 Y
i . Y

y(7) 0 0 0 Loy

k1 ko —k3 ky

Full-State Feedback Linearization

If r = n, then there exists a diffeomorphism that transforms the
system into the linear system

n=An

with the transformation being;:

m h(z) y
m Lh(x) Y
n Ly 'h(x) y(n=1)

We have a theorem to verify when a system is provably full-state
feedback linearizable. This theorem also provides us with tools to
know how to select the output h(z) such that the system is full-state
feedback linearizable.

The system & = f(z) +
g(x)u is full-state feedback linearizable around x¢ if and only if the follow-
ing two conditions hold:

C1) {g(mo) adygg(zo) .. ad}‘_1 g(xo)} has rank n.

Cz2) The distribution A(z) = span{g(z),adf g(z),... ,ad?“2 g(x)}is
involutive in a neighborhood of x.

Importantly, by the Frobenius theorem, a nonsingular distribution is
involutive if and only if it is completely integrable, which gives us
the condition that there must exist a function h(z) such that:

=0

Ox 1

where f; represents each element in the span of the associated distri-
bution A.
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Example 7: Consider the system

T1 = X2

Io sin(m) +u

First, to calculate the adjoint elements:

g(w) = m
adyg(z) =[f,g9] = % (z) = %g(m) - lcos(()sq) é] [ﬂ N [(1)]

Thus, the matrix of condition 1 is:
01
10
Second, we need to find an output h(z) such that

oh oh |0

This condition is satisfied for h(z) = .

which is full rank.

We can double check this by computing the relative degree associated
with h(z) = z1:

§j = dp = sin(z1) +u

Normal Form

If the system is not full-state feedback linearizable, the system will
have zero dynamics. The zero dynamics are those that remain when
the feedback linearizing control law is applied (with v = 0) and the
outputs are consequently driven to zero.

Example 8: Consider the system

T =22
Ty =—1 —|—x%+u
&3 = —w3+ a1
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First, we analyze the relative degree of the system:

y=1i1 =

y:$2:—x1+m§+u

Thus, the system has relative degree » = 2. The associated outputs
are y = x1 and y = x». The feedback control law is:

u:xl—m§+v

The zero dynamics can then be derived as:

i1 =0
iy =0+23+(0—23+0)=0
i3 =—x3+0

Thus, the zero dynamics are i3 = —z3.

To derive the zero dynamic coordinate transformation, we must find
the transformation z such that z is independent of the outputs, and 2
does not contain u. This is done by ensuring that Vz - g(z) = 0.

Example 8 continued: The zero dynamic coordinates associated with

our previous example can be derived by finding z to satisfy:

0z 0
— (1] =0 = z=ux3
ox 0

Thus, our transformation to normal form is:

m I
T:x— |m| = |x
z T3

This example is trivial since the normal form is already decom-
posed as exactly our system state...

The full normal form dynamics are:

T Up
mlf=|v
z —Zz

We can check whether this map is a diffeomorphism (with a smooth
inverse) by if its Jacobian has full rank.

You should check the Jacobian if a question asks you to “spec-
ify the region over which the transformation to Normal Form is
valid”

ME 6402 — LECTURE 27
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Example 8 continued: The Jacobian of the transformation is:

1
DT = |0
0

o = O

0
0
1

Since this is full rank, our transformation is a diffeomorphism for all
r € R3.

Control Lyapunov functions (Lecture 20)

Definition: Control Lyapunov Function. A positive definite function
V(z) is a (global) control Lyapunov function for the system & =
f(z) 4+ g(x)u if Yz # 0, Ju such that:

_ov

V(x) e

(f(z) +g(x)u) <0

One approach is to use Sontag’s formula which is a closed-form
solution to our inequality condition:

o L (B0 () (0)')) () o0

0 if 59 =0

The alternative appraoch is to use convex optimization to solve the
problem:

u* = minimize ||u|?
n

subject to LV (x) + LgV(z)u <0

Control Barrier functions (Lectures 23-25)

The summary of control Lyapunov functions compared to control
barrier functions is:

V < —a(V(z)) versus h > —a(h(x))
—_— —_—
Stability Safety

Definition: Barrier Function.A function h with C = {z | h(z) > 0}
is a barrier function for # = f(x) if there exists a locally Lipschitz
function o : R — R satisfying a(0) = 0 such that

h(z) > —a(h(z)), forallz € R"

9
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Definition: Control Barrier Function.A function h with C = {z | h(x) >
0} is a control barrier function for & = f(z) + g(z)u if there exists a
locally Lipschitz function o : R — R satisfying «(0) = 0 such that

sup h(z) > —a(h(z)), forallz € R"
u€R™

As with control Lyapunov functions, we can use either a closed-form
expression or convex optimization to find an input that satisfies our
inequality condition. The closed-form expression is:

0 if Lyh+a(h(z)) >0
U= —(Lsh+a(h(z))LshT

otherwise
[Lghl

The convex optimization approach can take many forms, but we dis-
cussed two main ones. The minimum effort control barrier function
is:

ut = miniﬁnize Il el
subject to  Lyh(z) + Loh(z)u > —a(h(z))
The minimally-invasive control barrier function is:
ut = minimize |1 — E(x)]?
subject to  Lh(x) + Lgh(2)u > —a(h(z))

Lastly, if Lyh(z) = 0, we will need to instead use a higher-order
barrier function.

Example 9: Consider the system:

T = X2

Ty = x3
P 2
T3 =—27+tu

Synthesize a control barrier function to keep the state 1 below a
threshold of 2.

This desired behavior can be encoded by the function h(z) = 2 —
x1 > 0. This is associated with the safe setlength

C={zeR®|n(z)=2—11 >0}

Taking the derivative, we get:

h = —&1 = —x2 - th = —x9, Lgh =0

10
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Thus, this is an invalid control barrier function because Lgh = 0.

Instead, we will need to use a higher-order barrier function of the
form:
¥(z) := h(2) + a(h(z))

which is associated with its own safe set

Ci={zeR®|¥(z) >0}

To check if this higher order barrier function is valid. While doing
this, we will assume «a(s) = ;s for simplicity.
Y = h(z) + o' (h(z))h
= —d2 +71(—22)

= I3 — N2

Since this is still not valid, we will need to take another higher-order
derivative:
Yo(z) = ¥(z) + a2(¥(2))

which is associated with the safe set

Co = {z € R®| ¥s(z) >0}

To check if this higher order barrier function is valid, we need to
again check whether L,¥, # 0. Again, we will assume ay(s) = 725
for simplicity.

Yo =Y¥(2) +a)(¥(2)¥
= (@3 — mi2) +y2(73 — 7172)

= —af +u—n3+7(r3 —N122)

Here, L;¥> = 1 which means that the higher-order barrier function
is valid everywhere. Finally, we will enforce this higher-order barrier
function by finding u such that:

Li¥a(z) + Ly¥a(z)u = —a(¥2(x))

11
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