
ME 6402 – Lecture 27
final exam review

April 17 2025

Overview:

• Backstepping

• Feedback Linearization

• Normal Form and Zero Dynamics

• Control Lyapunov functions

• Control Barrier functions

Additional Reading:

• Khalil Chapter 14.3 (Backstepping)

• Khalil Chapter 13 (Feedback Linearization of SISO Systems)

• Sastry Chapter 9.3 (Feedback Linearization of MIMO Systems)

• E. Sontag, 1983 (Control Lyapunov Functions)

• A. Ames et al. 2019 (Control Barrier Functions)

Backstepping (Lecture 13)

Backstepping is a specific control design technique for a certain class
of systems. The basic idea of backstepping is that we can stabilize the
system

ẋ1 = F (x1) +G(x1)x2

ẋ2 = u

through the coordinate shift z = x2 − k(x1), where k(x1) is a function
that would result in stable dynamics for the x1 subsystem. This effec-
tively shifts the equilibrium point for our x1 system and allows us to
render it stable through the coordinate shift. Then, we can stabilize
the remaining ẋ2 dynamics by choosing u such that ż is also a stable
subsystem.

An example of backstepping is the following (Example 14.8 from
Khalil):

Example 1: Consider the system

ẋ1 = x2
1 − x3

1 + x2

ẋ2 = u

The ẋ1 dynamics can be stabilized through the “control law”

x2 = k(x1) = −x2
1 − x1
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Applying this control would yield the system:

ẋ1 = −x3
1 − x1

which is stable. Notably, the −x3
1 term provides an additional damp-

ing stabilization term compared to only having ẋ1 = −x1.

Next, we will shift our system to effectively enforce this control law
when we drive the system to zero. This is done through the coordi-
nate shift z = x2 − k(x1), which results in the shifted system:

ẋ1 = x2
1 − x3

1 + (z + k(x1)) = −x3
1 − x1 + z

ż = u+ k̇

where k̇ = (−2x1 − 1)ẋ1 = −(2x1 + 1)(−x3
1 − x1 + z).

The main idea of backstepping is that we can then prove stability of
the x1 dynamics using the Lyapunov function V (x1) =

1
2x

2
1 and then

construct an augmented Lyapunov function to construct a control law
that would also stabilize the x2 dynamics:

V+ = V (η) +
1
2
z2

This results in the control law:

u = k̇− ∂V

∂x1
G(x1)−Kz

For our example, ∂V
∂x1

= x1 and G(x1) = 1. Taking K = 1 for
simplicity, we get the final control law:

u = k̇− ∂V

∂x1
G(x1)− z

= −(2x1 + 1)(−x3
1 − x1 + z)− x1 − z

If instead, we had had a system where ẋ2 was control affine, the
approach would be mostly the same. A specific example is as follows.

Example 2:

ẋ1 = x2
1 − x3

1 + x2

ẋ2 = x2 + 2u

We can convert the form to our previous form using the same ap-
proach as with input-output linearization:

u =
1
2
(−x2 + v)

This results in the system:

ẋ1 = x2
1 − x3

1 + x2

ẋ2 = v
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Thus, following the same procedure as in Example 1, we would ob-
tain:

v = −(2x1 + 1)(−x3
1 − x1 + z)− x1 − z

Plugging this back into our control law, we get:

u =
1
2

(
−x2 − (2x1 + 1)(−x3

1 − x1 + z)− x1 − z
)

Note: While it’s possible to recursively perform backstepping across
multiple states, this typically results in very ugly and complex con-
trol laws and thus will likely not appear on the final exam.

Feedback Linearization (Lectures 16-19)

Relative Degree

Definition: Relative Degree for SISO. A SISO system has relative de-
gree r if, in a neighborhood of the equilibrium:

LgL
i−1
f h(x) = 0, i = 1, 2, . . . , r− 1

LgL
r−1
f h(x) ̸= 0

Informally, this is the same as saying that “A SISO system has rela-
tive degree r if the input does not appear until the r-th derivative of
the output h(x)”.

Definition: Relative Degree for MIMO. A MIMO system has relative
degree ri for each output hi(x) if the i-th output needs to be differen-
tiated ri times before some input appears.

Definition: Vector Relative Degree for MIMO. A MIMO system has vec-
tor relative degree r = {r1, . . . , rm} if the matrix A(x) is nonsingular:

A(x) =


Lg1L

r1−1
f h1(x) · · · Lg1L

r1−1
f h1(x)

...
. . .

...
LgmLrm−1

f hm(x) · · · LgmLrm−1
f hm(x)


Example 3: Consider the system:

ẋ1 = x1

ẋ2 = x2 + u

y = x1

The system does not have a well-defined relative degree because
ẏ = ẋ1 = x1 = y. Thus the input u will never appear.
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Example 4: Consider the system:

ẋ1 = −x1 +
2 + x2

3
1 + x2

3
u

ẋ2 = x3

ẋ3 = x1x3 + u

y = x2

The system has relative degree 2 because:

ẏ = ẋ2 = x3

ÿ = ẋ3 = x1x3 + u

Notably, the relative degree is well-defined for all x ∈ R3.

Example 5: Consider the system (it is the controlled van der Pol
equation):

ẋ1 = x2

ẋ2 = −x1 + ε(1 − x2
1)x2 + u

y = x2

The system has relative degree 1 because ẏ = ẋ2 = −x1 + ε(1 −
x2

1)x2 + u. This is also well-defined for all x ∈ R2.

Example 6: Consider the MIMO system:

ẋ1 = cos(x3)u1

ẋ2 = sin(x3)u1

ẋ3 = u2

y1 = x1

y2 = x2

The system has relative degree r1 = r2 = 1 because

ẏ1 = ẋ1 = cos(x3)u1

ẏ2 = ẋ2 = sin(x3)u1

To check if the system has a valid vector relative degree, we need to
check if the matrix A(x) is nonsingular. Explicitly, this matrix is:

A :=

[
cos(x3) 0
sin(x3) 0

]

This matrix is NOT nonsingular, so it does not have a valid vector
relative degree. This means that we could not perform feedback
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linearization on this system. Instead, we would need to perform
dynamic extension:

ẋ1 = x4 cos(x3)

ẋ2 = x4 sin(x3)

ẋ3 = u2

ẋ4 = u1

y1 = x1

y2 = x2

This would result in each output having relative degree 2, with the
derivatives being:

ẏ1 = ẋ1 = x4 cos(x3)

ÿ1 = u1 cos(x3)− x4 sin(x3)u2

ẏ2 = ẋ2 = x4 sin(x3)

ÿ2 = u1 sin(x3) + x4 cos(x3)u2

Thus, the A matrix is now:

A :=

[
cos(x3) −x4 sin(x3)

sin(x3) x4 cos(x3)

]
This matrix is only singular when x4 = 0, so for any state such that
x4 ̸= 0, the system has a valid vector relative degree r = {2, 2}.

Input-Output Linearization

If a system has a well-defined realtive degree (or a valid vector rel-
ative degree for MIMO systems) then it is input-output linearizable.
Explicitly, this feedback linearizing control law is:

u =
1

LgL
r−1
f h(x)

(
−Lr

fh(x) + v
)

or

u = A−1(−B + v)

You can always think of this as the latter if you rearrange the system
to be in the form:

y(r) = B +Au

By selecting the auxiliary control law

v = −k1y− k2ẏ− · · · − kry
(r−1) (1)
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we can transform our input-output system to be:


ẏ

ÿ
...

y(r)

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−k1 −k2 −k3 · · · −kr




y

ẏ
. . .

y(r−1)



Full-State Feedback Linearization

If r = n, then there exists a diffeomorphism that transforms the
system into the linear system

η̇ = Aη

with the transformation being:

x 7→


η1

η2
...
ηn

 =


h(x)

Lfh(x)
...

Ln−1
f h(x)

 =


y

ẏ
...

y(n−1)


We have a theorem to verify when a system is provably full-state
feedback linearizable. This theorem also provides us with tools to
know how to select the output h(x) such that the system is full-state
feedback linearizable.

Theorem: Full-State Feedback Linearizable. The system ẋ = f(x) +

g(x)u is full-state feedback linearizable around x0 if and only if the follow-
ing two conditions hold:

C1)
[
g(x0) adf g(x0) . . . adn−1

f g(x0)
]

has rank n.

C2) The distribution ∆(x) = span{g(x), adf g(x), . . . , adn−2
f g(x)} is

involutive in a neighborhood of x0.

Importantly, by the Frobenius theorem, a nonsingular distribution is
involutive if and only if it is completely integrable, which gives us
the condition that there must exist a function h(x) such that:

∂h

∂x
fj = 0

where fj represents each element in the span of the associated distri-
bution ∆.
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Example 7: Consider the system

ẋ1 = x2

ẋ2 sin(x1) + u

First, to calculate the adjoint elements:

g(x) =

[
0
1

]

adf g(x) = [f , g] =
∂g

∂x
f(x)− ∂f

∂x
g(x) = −

[
0 1

cos(x1) 0

] [
0
1

]
=

[
1
0

]

Thus, the matrix of condition 1 is:[
0 1
1 0

]

which is full rank.

Second, we need to find an output h(x) such that

∂h

∂x
g(x) = 0 =⇒ ∂h

∂x

[
0
1

]
= 0

This condition is satisfied for h(x) = x1.

We can double check this by computing the relative degree associated
with h(x) = x1:

ẏ = ẋ1 = x2

ÿ = ẋ2 = sin(x1) + u

Normal Form

If the system is not full-state feedback linearizable, the system will
have zero dynamics. The zero dynamics are those that remain when
the feedback linearizing control law is applied (with v = 0) and the
outputs are consequently driven to zero.

Example 8: Consider the system

ẋ1 = x2

ẋ2 = −x1 + x2
3 + u

ẋ3 = −x3 + x1

y = x1



me 6402 – lecture 27 8

First, we analyze the relative degree of the system:

ẏ = ẋ1 = x2

ÿ = ẋ2 = −x1 + x2
3 + u

Thus, the system has relative degree r = 2. The associated outputs
are y = x1 and ẏ = x2. The feedback control law is:

u = x1 − x2
3 + v

The zero dynamics can then be derived as:

ẋ1 = 0

ẋ2 = 0 + x2
3 + (0 − x2

3 + 0) = 0

ẋ3 = −x3 + 0

Thus, the zero dynamics are ẋ3 = −x3.

To derive the zero dynamic coordinate transformation, we must find
the transformation z such that z is independent of the outputs, and ż

does not contain u. This is done by ensuring that ∇z · g(x) = 0.

Example 8 continued: The zero dynamic coordinates associated with
our previous example can be derived by finding z to satisfy:

∂z

∂x

0
1
0

 = 0 =⇒ z = x3

Thus, our transformation to normal form is:

T : x 7→

η1

η2

z

 =

x1

x2

x3


Note: This example is trivial since the normal form is already decom-
posed as exactly our system state...

The full normal form dynamics are:η̇1

η̇2

ż

 =

 η2

v

−z


We can check whether this map is a diffeomorphism (with a smooth
inverse) by if its Jacobian has full rank.

Note: You should check the Jacobian if a question asks you to “spec-
ify the region over which the transformation to Normal Form is
valid”
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Example 8 continued: The Jacobian of the transformation is:

DT =

1 0 0
0 1 0
0 0 1


Since this is full rank, our transformation is a diffeomorphism for all
x ∈ R3.

Control Lyapunov functions (Lecture 20)

Definition: Control Lyapunov Function. A positive definite function
V (x) is a (global) control Lyapunov function for the system ẋ =

f(x) + g(x)u if ∀x ̸= 0, ∃u such that:

V̇ (x) =
∂V

∂x
(f(x) + g(x)u) < 0

One approach is to use Sontag’s formula which is a closed-form
solution to our inequality condition:

u =


−
(
(∂V∂x f) +

√((
∂V
∂x f

)2
+
(
∂V
∂x g

)4
))

/
(
∂V
∂x g

)
if ∂V

∂x g ̸= 0

0 if ∂V
∂x g = 0

The alternative appraoch is to use convex optimization to solve the
problem:

u∗ = minimize
µ

∥µ∥2

subject to LfV (x) + LgV (x)µ < 0

Control Barrier functions (Lectures 23-25)

The summary of control Lyapunov functions compared to control
barrier functions is:

V̇ ≤ −α(V (x))︸ ︷︷ ︸
Stability

versus ḣ ≥ −α(h(x))︸ ︷︷ ︸
Safety

Definition: Barrier Function.A function h with C = {x | h(x) ≥ 0}
is a barrier function for ẋ = f(x) if there exists a locally Lipschitz
function α : R → R satisfying α(0) = 0 such that

ḣ(x) ≥ −α(h(x)), for all x ∈ Rn
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Definition: Control Barrier Function.A function h with C = {x | h(x) ≥
0} is a control barrier function for ẋ = f(x) + g(x)u if there exists a
locally Lipschitz function α : R → R satisfying α(0) = 0 such that

sup
u∈Rm

ḣ(x) ≥ −α(h(x)), for all x ∈ Rn

As with control Lyapunov functions, we can use either a closed-form
expression or convex optimization to find an input that satisfies our
inequality condition. The closed-form expression is:

u =

0 if Lfh+ α(h(x)) ≥ 0
−(Lfh+α(h(x)))LghT

∥Lgh∥2 otherwise

The convex optimization approach can take many forms, but we dis-
cussed two main ones. The minimum effort control barrier function
is:

u∗ = minimize
µ

∥µ∥2

subject to Lfh(x) + Lgh(x)µ ≥ −α(h(x))

The minimally-invasive control barrier function is:

u∗ = minimize
µ

∥µ− k(x)∥2

subject to Lfh(x) + Lgh(x)µ ≥ −α(h(x))

Lastly, if Lgh(x) ≡ 0, we will need to instead use a higher-order
barrier function.

Example 9: Consider the system:

ẋ1 = x2

ẋ2 = x3

ẋ3 = −x2
1 + u

Synthesize a control barrier function to keep the state x1 below a
threshold of 2.

This desired behavior can be encoded by the function h(x) = 2 −
x1 ≥ 0. This is associated with the safe setlength

C = {x ∈ R3 | h(x) = 2 − x1 ≥ 0}

Taking the derivative, we get:

ḣ = −ẋ1 = −x2 =⇒ Lfh = −x2, Lgh = 0
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Thus, this is an invalid control barrier function because Lgh ≡ 0.

Instead, we will need to use a higher-order barrier function of the
form:

Ψ(x) := ḣ(x) + α(h(x))

which is associated with its own safe set

C1 = {x ∈ R3 | Ψ(x) ≥ 0}

To check if this higher order barrier function is valid. While doing
this, we will assume α(s) = γ1s for simplicity.

Ψ̇ = ḧ(x) + α′(h(x))ḣ

= −ẋ2 + γ1(−x2)

= x3 − γ1x2

Since this is still not valid, we will need to take another higher-order
derivative:

Ψ2(x) = Ψ̇(x) + α2(Ψ(x))

which is associated with the safe set

C2 = {x ∈ R3 | Ψ2(x) ≥ 0}

To check if this higher order barrier function is valid, we need to
again check whether LgΨ2 ̸= 0. Again, we will assume α2(s) = γ2s

for simplicity.

Ψ̇2 = Ψ̈(x) + α′
2(Ψ(x))Ψ̇

= (ẋ3 − γ1ẋ2) + γ2(x3 − γ1x2)

= −x2
1 + u− γ1x3 + γ2(x3 − γ1x2)

Here, LgΨ2 = 1 which means that the higher-order barrier function
is valid everywhere. Finally, we will enforce this higher-order barrier
function by finding u such that:

LfΨ2(x) + LgΨ2(x)u ≥ −α2(Ψ2(x))
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