
ME 6402 – Lecture 26
hybrid systems and zero dynamics

April 15 2025

Overview:

• Model walking as a hybrid system

• Introduce hybrid zero dynamics

Additional Reading:

• J.W Grizzle, C. Chevallereau, R.W. Sinnet, A.D. Ames. “Models,
feedback control, and open problems of 3D bipedal robotic walk-
ing.” Automatica. 2014.

Hybrid Systems

Hybrid systems combine continuous and discrete dynamics, making
it a particularly useful tool for systems with discrete impact events
such as bipedal robots.

Definition: Hybrid System. A simple or single-domain hybrid system
is a tuple:

H = (D,S, ∆, f),

where

• D is the domain with D ⊆ Rn a connected subset of the state
space Rn.

• S ⊂ D is a proper subset of the domain, called the guard or
switching surface.

• ∆ : S → D is a smooth map called the reset map often represent-
ing the discrete impact dynamics.

• f is the vector field on D representing the continuous dynamics.

For a system with impulsive discrete dynamics, the hybrid system
can be written as:

H =

ẋ = f(x) if x ∈ D \ S
x+ = ∆(x) if x ∈ S

where x− is the pre-impact state and x+ is the post-impact state.

Definition: Hybrid Control System. A hybrid control system is a tuple:

HC = (D,U ,S, ∆, f , g)

where the additions are:

https://www.sciencedirect.com/science/article/pii/S0005109814001654?casa_token=evAxNgmTo58AAAAA:mj7PZwafHK1sXjbvIV0iCPQeWIv5ROzY1GmHfWDOwnSBhh9JsQ-5SokE8UG6wkfoMLUPswm_L4o
https://www.sciencedirect.com/science/article/pii/S0005109814001654?casa_token=evAxNgmTo58AAAAA:mj7PZwafHK1sXjbvIV0iCPQeWIv5ROzY1GmHfWDOwnSBhh9JsQ-5SokE8UG6wkfoMLUPswm_L4o
https://www.sciencedirect.com/science/article/pii/S0005109814001654?casa_token=evAxNgmTo58AAAAA:mj7PZwafHK1sXjbvIV0iCPQeWIv5ROzY1GmHfWDOwnSBhh9JsQ-5SokE8UG6wkfoMLUPswm_L4o


me 6402 – lecture 26 2

• U ⊆ Rm is the set of admissible controls

• (f , g) is a control system on D

Again, a system with impulsive effects can be written as:

H =

ẋ = f(x) + g(x)u if x ∈ D \ S
x+ = ∆(x) if x ∈ S

Figure 1: A simple hybrid control
system with one domain and one
switching surface.

Dynamic models for bipedal robots

Most bipedal systems are modeled as the following (image taken
from Models, feedback control, and open problems of 3D bipedal
robotic walking):

with R0 being a fixed inertial frame, Rst being a frame attached to
the stance foot, and Rb a frame attached to the torso. There are two
general methods for describing the states of this system: a pinned
model, and an unpinned model.

The pinned model assumes that the stance foot is “pinned” to the
ground (i.e., the ground contact is assumed to be satisfied). As long
as this condition is held, then the full system states can be described
by the joint angles and the position/orientation of the stance foot.

The unpinned model instead does not place any assumptions on the
stance foot, but instead augments the system state to include in-
formation about the “floating-base frame”. This leaves us with the
augmented set of coordinates:

q = (p⊤b ,ϕ⊤b , θ⊤)⊤ ∈ Q = R3 × SO(3)× Rm

where pb ∈ R3 is the Cartesian position of frame Rb and orientation
ϕb ∈ SO(3) of frame Rb with respect to the fixed frame R0. Our joint
angles (joint-space coordinates) are denoted as usual as θ ∈ Rm.

https://www.sciencedirect.com/science/article/pii/S0005109814001654?casa_token=evAxNgmTo58AAAAA:mj7PZwafHK1sXjbvIV0iCPQeWIv5ROzY1GmHfWDOwnSBhh9JsQ-5SokE8UG6wkfoMLUPswm_L4o
https://www.sciencedirect.com/science/article/pii/S0005109814001654?casa_token=evAxNgmTo58AAAAA:mj7PZwafHK1sXjbvIV0iCPQeWIv5ROzY1GmHfWDOwnSBhh9JsQ-5SokE8UG6wkfoMLUPswm_L4o


me 6402 – lecture 26 3

A planar robot that is often used in the literature is the RABBIT
robot:

Figure 2: The RABBIT robot (left) and
its schematic (right).

In this case, we have four joint angles:

θ = (θsh, θsk, θnsh, θnsk)
⊤

= (q1, q3, q2, q4)
⊤ (as shown in the figure above)

with the subscripts denoting stance hip, stance knee, nonstance hip,
and nonstance knee.

For simplicity, we will assume a pinned model, in which the full
system state can be represented through the addition of q5 which will
represent the angle of the torso with respect to the vertical axis.

Continuous-Time Equations of Motion

In the case of a walking robot, the continuous-time dynamics of the
system can be modeled using the standard robot equations of motion
(obtained using the Lagrangian mechanics):

τ = M (q)q̈+H(q, q̇)

Except now, since all of our coordinates aren’t actuated, we will in-
troduce an actuation matrix B to only assign torque to the actuated
coordinates:

Bu = M (q) +H(q, q̇)

In the scenario where the system is fully-actuated, B is simply the
identity matrix. If instead we used the pinned model for RABBIT, we
would have: q = (q1, q2, q3, q4, q5)

⊤, with:

B =

[
I4×4

01×4

]

Discrete-Time Equations of Motion

We model the instantaneous change in the system velocity at impact
the impact model. While there are various ways to model this interac-
tion, one way is to assume conservation of momentum as proposed
by Hurmuzlu and Marghitu

M (q)(q̇+ − q̇−) = Jst(q)
⊤Fimp

with Jst being the Jacobian of the stance foot with respect to the cen-
ter of mass, Fimp being the integral of the impulsive contact wrench

https://journals.sagepub.com/doi/10.1177/027836499401300106


me 6402 – lecture 26 4

over the impact duration (typically assumed to be very small), q̇−

being the velocity just before impact, and q̇+ being the velocity just
after impact. This equation, combined with a kinematic constraint of
the post-impact state:

J(q)q̇+ = 0

gives us our impact model:[
M (q) Jst(q)⊤

Jst(q) 0

] [
q̇+

Fimp

]
=

[
M (q)q̇−

0

]

Block matrix inversion yields the direct mapping:

q̇+ = (I −M−1J⊤
st(JstM

−1J⊤
st)

−1JstM
−1)︸ ︷︷ ︸

∆(q)

q̇−

(dropped input (q) for notation)

q̇+ = ∆(q)q̇−

Note here that q is assumed to be the same pre and post-impact, but
we could assign a relabeling matrix such that we have q+ = Rq−.
This would change our impact map to be:[

q+

q̇+

]
=

[
Rq−

R∆(q−)q̇−

]

Return to Hybrid Systems

In summary, we can represent the combination of continuous-time
dynamics and discrete-time dynamics as a hybrid system. For nota-
tion, we will combine q and q̇ into a single state x = (q⊤, q̇⊤)⊤. We
can then represent our continuous-time dynamics as:

ẋ = f(x) + g(x)u[
q̇

q̈

]
=

[
q̇

−M (q)−1H(q, q̇)

]
+

[
0

M (q)−1B

]
u

Each node of the hybrid system contains continuous-time dynamics
with a pre-defined set of ground contact constraints. The transition
between a node and the next is then governed by the discrete-time
dynamics of the impact model. We can enforce when to trigger the
discrete transition as a switching (or impact) condition ϕ(x) When
this condition is equal to zero, the system will transition to the next
node. Using this condition, we can represet the set of coordinates



me 6402 – lecture 26 5

that are satisfied when the condition is true as the sets belonging to a
switching surface:

S = {x ∈ D | ϕ(x) = 0, ϕ̇ < 0}

Typically for walking, the switching condition is selected to be the
height of the non-stance foot: ϕ(x) = pznsf (x). This transforms our
switching surface to be:

S = {x ∈ D | pznsf (x) = 0, ṗznsf < 0}

Finally, we can represent our hybrid system as:

HC =

ẋ = f(x) + g(x)u x ̸∈ S
x+ = ∆(x−) x− ∈ S

More complex hybrid systems can be constructed in situations where
there are multiple contact domains. For example, full “foot-rolling”
walking can be captured by the following graph:

Periodic Orbits

Suppose that φ(t,x0) is a periodic solution with initial condition
x0 ∈ D and a period T > 0. A periodic orbit is a solution of the form:

O = {φ(t,x0) | t ∈ [0,T ]}

Definition: Periodic. We say that φ is periodic with period T if
φ(T , ∆(x∗)) = x∗.

Definition: Hybrid Periodic Orbit. A set O is a hybrid periodic orbit
with fixed point x∗ if O = {φ(t,x∗) | 0 ≤ t ≤ T} for a periodic
solution φ.

Associated with a periodic orbit is a Poincaré map which defines
a discrete time dynamical system on a subspace of the domain of



me 6402 – lecture 26 6

the dynamical system. This system determines the stability of the
periodic orbit. Taking S to be the Poincaré section, we can obtain the
Poincaré map P : S → S which is a partial function:

P (x) = φ(TI (x), ∆(x)),

where TI : S → R≥0 is the time-to-impact function:

TI (x) = min{t ≥ 0 | φ(t, ∆(x)) ∈ S}, x ∈ S

The stability of the Poincaré map determines the stability of the peri-
odic orbit O.

Theorem: Periodic Stability. Given a hybrid system H with a periodic
orbit O, the associated Poincaré map P is (locally) exponentially stable at
the fixed point x∗ as a discrete time system xk+1 = P (xk) if and only if the
periodic orbit O is (locally) exponentially stable.

A graphical illustration of the Poincaré map and stability analysis via
projection onto a Poincaré section is shown below:

Note: It is often not possible to analytically compute the Poincaré
map, so instead it is numerically approximated via its Jacobian. If the
eigenvalues of the Jacobian have magnitude less than 1, the stability
of the periodic orbit O has been numerically verified.

Feedback Control for Biped Robots

Stable locomotion can be achieved by constructing a feedback con-
troller that renders the periodic orbit O locally exponentially stable.
In the case of an underactuated robot (such as RABBIT), we can use a
hybrid zero dynamics approach to construct a feedback controller that
stabilizes the periodic orbit even when the system has zero dynamics.

The first step, is to select our choice of outputs:

y(q) := ya(q)− yd(τ (q),α) ∈ Rm, τ (q) =
θ(q)− θ+

θ− − θ+



me 6402 – lecture 26 7

where yd(τ ,α) is the desired output trajectory parameterized by
some set of coefficients α, and a phasing variable θ : D → [0, 1] with θ+

being its value post-impact and θ− being its value pre-impact.

By modeling our system using the Euler-Lagrange Equations of Mo-
tion, and by selecting an output that is only a function of q, we know
that the outputs will be relative degree. In other words, we know that
we can differentiate the output twice to obtain:

ÿ(x) = L2
fy(x) + LgLfy(x)u

Therefore, selecting the feedback linearizing control law

u(x) = (LgLfy(x))
−1

(
−L2

fy(x) + v
)

yields the linear system[
ẏ

ÿ

]
=

[
0 I

0 0

] [
y

ẏ

]
+

[
0
I

]
v

If we select the auxiliary control law

v =
1
ε2KP y−

1
ε
KDẏ

then our closed loop system becomes the linear system:[
ẏ

ÿ

]
=

1
ε

[
0 εI

− 1
εKP −KD

] [
y

ẏ

]

with KP and KD selected so that the system is stable for all 0 < ε <

1. The choice of ε forces the system to converge at a user-specified
rate. Specifically, the feedback controller will drive y and ẏ to zero
exponentially fast at a rate of 1/ε.

Zero Dynamics

As the feedback control law is driving y → 0 and ẏ → 0, it is driving
the continuous dynamics to the zero dynamics surface:

Zα := {x ∈ D | y(x) = 0, ẏ(x) = 0}

For more information on zero dynamics applied to bipedal robots, I
highly recommend ”Hybrid Zero Dynamics of Planar Biped Walkers”
by E. Westervelt et al. If you’d like even more details, Jessy Grizzle
has written an entire textbook around this concept titled “Feedback
Control of Dynamic Bipedal Robot Locomotion”.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1166523
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1166523
https://grizzle.robotics.umich.edu/publications/biped-book
https://grizzle.robotics.umich.edu/publications/biped-book


me 6402 – lecture 26 8

The main benefit of projecting our system onto the Zero Dynamics
Surface is that it reduces the dimensionality of our system and allows
us to analyze the periodic stability of only the zero dynamics. This
restricted hybrid system is written as:

HZα :=

ż = w(0, z) if z ∈ Zα \ S ⋂Zα

z+ = ∆(z−) if z− ∈ S
⋂Zα

Figure 3: Illustration of hybrid zero
dynamics

Then, our theorem from before can be restated as:

OZα
is exponentially stable =⇒ O is exponentially stable



me 6402 – lecture 26 9

APPENDIX: Trajectory Generation

The goal of trajectory generation for bipedal robots is to synthesize
a set of polynomials for the controllable states of our system such
that the full-order model remains periodically stable. To do this, we
pick a set of outputs (also called virtual constraints) y that we want to
construct. While these outputs can be any function of the state, they
are commonly chosen to be the joint angles/velocities. For RABBIT,
we will choose the desired outputs to be:

yd(q) =


qd1
qd2
qd3
qd4


Our goal for control is then drive the outputs to zero, which is equiv-
alent to driving the actual outputs to the desired outputs:

y = yd − ya

Ensuring that this output is zero through control is why we often call
it a virtual constraint.

Once equipped with our hybrid system model and our choice of vir-
tual constraints, we can construct a trajectory generation optimization
problem to solve for the polynomials of the desired outputs such that
the following inequality and equality constraints are held:

Inequality Constraints

• The phasing variable ϕ is strictly increasing, ϕ̇ > 0 along the
solution of each domain

• the solution respects the domain of admissibility (joint limits)

• positive vertical reaction force on the stance foot (no take off con-
straint)

• friction constraints

• bounds on allowed actuator torques

• the swing foot is positioned above the ground (unless a double-
support phase)

Equality Constraints

• conditions at the domain transitions impose periodicity



me 6402 – lecture 26 10

• desired walking speed

• other desired walking characteristics (step length, step duration,
step height, step width)

Cost function

Typically, the cost function for this optimization problem is taken
to be the norm of the control input. However, one of the most well-
behaved cost functions is the cost of transport which also accounts for
energy relative to the associated step length:

J =
1
SL

∫ T

0
∥u(t)∥2

2dt

Optimization Problem Formulation

Mathematically, we can write down this optimization problem as the
following:

{α∗,X∗} = argmin
α,X

J(X)

subject to:

ẋ = f(x) + g(x)u∗(x)

(Satisfies Closed-Loop Dynamics)

∆(y(x−)) = y(x+) (Periodic Condition)

Xmin ⪯ X ⪯ Xmax (Decision Variables)

cmin ≤ c(X) ≤ cmax (Physical Constraints)

amin ≤ a(X) ≤ amax (Feature Constraints)

where α∗ is our collection of polynomial coefficients for the desired
outputs, and X = (x0, . . . ,xN ,T ) is the collection of all decision
variables with xi being the state at the ith discretization of time and
T being the total duration of the trajectory.

Methods for Trajectory Optimization

Since this optimization problem is nonlinear, it can be very chal-
lenging to solve. For an interesting read about a few appraoches to
solving these optimization problems, check out this blog post here.

For our appraoch to trajectory optimization, a past graduate student
project was the development of the FROST toolbox which constructs

https://www.matthewpeterkelly.com/tutorials/trajectoryOptimization/canon.html


me 6402 – lecture 26 11

these hybrid system trajectory optimization problems in MATLAB
using IPOPT: Frost Website. I’ve also tried to document an exam-
ple gait generation setup for the RABBIT model (plus a version that
has flat feet with actuated ankles) in the following repository: rab-
bit_opt_example.

https://ayonga.github.io/frost-dev/pages/installation.html
https://github.com/maegant/rabbit_opt_example
https://github.com/maegant/rabbit_opt_example

	Hybrid Systems
	Periodic Orbits
	Feedback Control for Biped Robots
	Zero Dynamics
	APPENDIX: Trajectory Generation

