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higher-order control barrier functions

April 10 2025

Overview:

• Introduce the notion of relative degree for control barrier functions

• Extend CBFs to systems with relative degree > 1

Additional Reading:

• A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control Barrier Functions: Theory and Applications,”
IEEE Transactions on Automatic Control, 2019.

Control Barrier Functions

Definition: CBF (recall). A function h with C = {x | h(x) ≥ 0} is
a control barrier function (CBF) for ẋ = f(x) + g(x)u if there exists a
locally Lipschitz function α : R → R satisfying α(0) = 0 such that

sup
u∈Rm

∇h(x)T (f(x) + g(x)u) ≥ −α(h(x)) for all x ∈ Rn. (1)

We can also write (1) using Lie derivative notation:

sup
u∈Rm

Lfh(x) + Lgh(x)u ≥ −α(h(x)) (2)

Define

U(x) = {u ∈ Rm | ∇h(x)T (f(x) + g(x)u) ≥ −α(h(x))}. (3)

Theorem: CBF (recall). If h is a control barrier function for ẋ = f(x) +

g(x)u, then the following hold:

1. U(x) ̸= ∅ for all x;

2. Any Lipschitz feedback control u : Rn → Rm satisfying u(x) ∈ U(x)

renders C invariant;

3. A feedback control is given by

u∗(x) =

0 if Lfh(x) + α(h(x)) ≥ 0
−(Lfh(x)+α(h(x)))Lgh(x)T

Lgh(x)Lgh(x)T
otherwise.

(4)

For u∗(x) to be Lipschitz on some domain, we must certify that Lgh(x) ̸=
0 everywhere on the domain.

https://ieeexplore.ieee.org/document/8796030
https://ieeexplore.ieee.org/document/8796030
https://ieeexplore.ieee.org/document/8796030
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Example 1: (Cart-Pole System Revisited)

Recall the model of the cart-pole system:

p̈ =
1

1 + sin2 θ

(
u+ θ̇2 sin θ− g sin θ cos θ

)

θ̈ =
1

1 + sin2 θ

(
− u cos θ− θ̇2 cos θ sin θ+ 2g sin θ

) (5)

Unlike last lecture, suppose we want y to satisfy −L ≤ p ≤ L. Try

h(x) =
1
2
(−p2 + L2) (6)

α(s) = γs, γ > 0. (7)

But ∇h(x)T g(x) ≡ 0. Then h cannot be a CBF because the control
input vanishes from the CBF condition:

sup
u∈Rm

Lfh(x) + Lgh(x)u ≥ −α(h(x))

For systems such that ḣ(x) does not depend on u, we need h that
depends on more state variables. There is a systematic way to do this.
Suppose h satisfies Lgh(x) ≡ 0 and cannot be used as a CBF. Define:

Ψ1(x) = Lfh(x) + α1(h(x))

for some Lipschitz α1 satisfying α(0) = 0, and let

C1 = {x | Ψ1(x) ≥ 0}

This higher-order CBF is then enforced by the condition:

sup
u∈Rm

LfΨ1(x) + LgΨ1(x)u ≥ −α2(Ψ1(x))

Lemma: Higher-Order CBF Invariance. Suppose u(x) is a feedback
control law such that C1 is invariant. Then C ⋂ C1 is also invariant, where
C = {x | h(x) ≥ 0}.

Proof. Consider x0 ∈ C ⋂ C1 and let x(t) be a corresponding closed-
loop trajectory. Then x(t) ∈ C1 for all t ≥ 0 by assumption, and
therefore

ḣ(x(t)) = Lfh(x(t)) ≥ −α1(h(x(t))).

Since h(x0) ≥ 0 by assumption, h(x(t)) ≥ 0 for all t ≥ 0 by the
Comparison Lemma.
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Question: How can we ensure that C1 is invariant?
Answer: Use Ψ1(x) as a CBF!

• If ∇Ψ1(x)
T g(x) ≡ 0, repeat the process, defining Ψ2(x) =

∇Ψ1(x)
T f(x) + α2(Ψ1(x)).

• h(x) is called a high-order CBF of degree r when this process ends
with a CBF Ψr−1(x).

How many times will we repeat, i.e., what is r? This is related to
relative degree.

• Least relative degree r is the minimum relative degree over all states
x. Therefore LgΨr−1(x) = LgL

r−2
f h(x) ̸= 0 for some x, but not

necessarily all x.

For the previous construction to lead to a valid CBF, we need:

LfΨr−1(x) + αr(Ψr(x)) ≥ 0, whenever LgΨr−1(x) = 0

• States where LgΨr−1(x) = 0 become important to pay attention to
(more on this later)

Example 2: Consider the double integrator ẍ1 = u, i.e., ẋ1 = x2,
ẋ2 = u. Explicitly, this is written in control-affine form:

ẋ =

[
x2

0

]
+

[
0
1

]
u

Suppose that we want x1 ≤ L always. Choose:

h(x) = L− x1

We can check the relative degree of the control barrier function:

∇h(x)T g(x) =
[
−1 0

] [0
1

]
≡ 0

This is the same thing as differentiating h(x) until u appears:

ḣ(x) = −ẋ1 = −x2

ḧ(x) = −ẋ2 = −u

Thus, since the relative degree is > 1, we will need a higher order
CBF.
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Choosing α1(s) = γ1s, the higher-order CBF Ψ1 is defined as:

Ψ1(x) = Lfh(x) +����Lgh(x)︸ ︷︷ ︸
ḣ

+α1(h(x))

=
[
−1 0

] [x2

u

]
+ γ(L− x1)

= −x2 + γ(L− x1)

We can verify that Ψ1 is a CBF by checking the condition:,

LgΨ1 = ∇Ψ1(x)
T g(x) = −1

Thus we can use Ψ1(x) as a valid CBF. Explicitly, our safe sets are
defined as:

C = {x | h(x) ≥ 0} = {x | x1 ≤ L}
C1 = {x | Ψ1(x) ≥ 0} = {x | −x2 + γ(L− x1) ≥ 0}

−γ1C ∩ C1

L
x1

x2

Explicitly, the higher-order CBF Φ1 can be inforced via the condition
(and taking α2(s) = γ2s):

Ψ̇1 ≥ −α2(Ψ1(x))

−ẋ2 − γ1ẋ1 ≥ −γ2(−x2 + γ1(L− x1))

−u− γ1x2 ≥ −γ2(−x2 + γ1(L− x1))

Example 3: Let’s try ẍ1 = u again, but with the safe set −L ≥ x ≤ L.
Choose:

h(x) =
1
2
(−x2

1 + L2).

Then,

ḣ(x) = −x1ẋ1 = −x1x2

ḧ(x) = −ẋ1x2 − x1ẋ2

= −x2
2 − x1u
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Thus the least relative degree is r = 2. This yields the higher-order
CBF:

Ψ1(x) = ḣ+ α1(h(x)) = −x1x2 + α1

(
1
2
(−x2

1 + L2)

)

L
x1

x2

However, in this example, its important to note that there are states
where LgΨ1(x) = 0:

LgΨ1(x) = ∇Ψ1(x)
T g(x) =

[
−x2 − γ1 −x1

] [0
1

]
= −x1

We can also observe this by taking the derivative of Ψ1:

Ψ(x) = ḣ+ α1(h(x))

Ψ̇(x) = ḧ+ α′
1(h(x))ḣ(x)

= −x2
2 −x1︸︷︷︸
LgΨ1

u+ α′
1

(
1
2
(−x2

1 + L2)

)
(−x1x2)

• It is possible that LgLfh(x) = 0? Yes! Whenever x1 = 0.

• Is this a problem? We need to investigate further...

We need to see if we can find α2 such that

Ψ̇(x) + α2(Ψ(x)) ≥ 0

whenever x1 = 0. Evaluating at x1 = 0:

Ψ̇(x) + α2(Ψ(x)) |x1=0 = −x2
2 + α2(α1(L

2/2))

Thus, it is always possible to find x2 large enough so that −x2
2 +

α2(α1(L
2/2)) < 0, regardless of α1 and α2, so Ψ is not a valid CBF.

What should we do? We have two options:

Option 1: Nothing, except make sure α1 and α2 have sufficient
slope so that this is only a problem when x2 is very
large. This is practical, but loses theoretical guarantees
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Option 2: Try a different higher-order CBF h (next example)

Example 4: Let’s consider the same system ẍ1 = u, but we will try
the control barrier function:

h(x) =
1
4
(−x4

1 + L4), ḣ(x) = −x3
1x2, ḧ(x) = 3x2

1x
2
2 − x3

1u.

Let

Ψ(x) = ḣ+ γ1h = −x3
1x2 +

γ1

4
(−x4

1 + L4)

Ψ̇(x) = ḧ+ γ1ḣ = 3x2
1x

2
2 − x3

1u+
γ1

4
(−x3

1x2)

Then, still x3
1 = 0 whenever x1 = 0. But,

LfΨ(x) = 3x2
1x

2
2 − α1x

3
1x2

and therefore LfΨ(x) = 0 whenever LgΨ(x) = 0. This means that Ψ
satisfies the CBF constraint supu LfΨ(x) + LgΨ(x)u ≥ −α2(Ψ(x)) for
any α2, and Ψ is a valid CBF.

Note: The important takeaway is to make sure that LfΨ = 0 when-
ever LgΨ = 0.

Example 5: You will implement a higher-order CBF for the cart-pole
system for your homework! :)
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