ME 6402 — Lecture 24
CONTROL BARRIER FUNCTIONS

April 8 2025

Overview:
e Extend barrier functions to Control Barrier Functions
Additional Reading;:

* A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control Barrier Functions: Theory and Applications,”
IEEE Transactions on Automatic Control, 2019.

Control Barrier Functions

Consider a control-affine system

&= f(z) +g(x)u (1)

and a given set C = {x s.t. h(z) > 0}. How can we choose a con-
troller u(z) such that C is positively invariant?

Recall Barrier Functions:
h(z) = Vh(z)T f(z) > —a(h(z)) forall z € R" (2)
Recall that we also have the following theorem for barrier functions:

If h is a barrier function, then C = {x :
h(z) > 0} is positively invariant.

Definition: Control Barrier Function. A function h with C = {z s.t. h(z) >

0} is a control barrier function (CBF) for a control-affine system & =
f(z) + g(z)u if there exists a locally Lipschitz function « : R — R
satisfying a(0) = 0 such that

sup Vh(z)T(f(z) + g(z)u) > —a(h(z)) forallz € R*. (3)

ueR™

We can also write (3) using Lie derivative notation:

sup Lyh(x) + Lgh(x)u > —a(h(z)) (4)

u€R™
Define

U(x) = {u € R™ st. Va()"(f(2) + g(x)u) > —a(h(2))}.  (5)

The supremum is the smallest number
that is greater than or equal to every
element in the set. The supremum must
be a real number (cannot be infinity).


https://ieeexplore.ieee.org/document/8796030
https://ieeexplore.ieee.org/document/8796030
https://ieeexplore.ieee.org/document/8796030

If h is a control barrier function for (1),
then the following hold:
1. U(z) # @ for all x;
2. Any Lipschitz feedback control u : R™ — R™ satisfying u(z) € U(z)
renders C invariant;

3. A feedback control is given by

0if Vh(z)" f(z) +a(h(z)) 20

* _ —Vh(z)T f(z)—a(h(z)) T
u (I) = [Vh()Tg(x)|2 (g(ac) Vh(.%‘)) (6)

otherwise.

this is the same thing as writing:

u*(x) = {O if Lh(z) +a(h(z)) >0

~(Lgh@+alh@) Loh(@)T @

Lgh(z)Lgh(x)T
A sufficient condition for w*(x) to be Lipschitz on some domain is that
Vh(z)Tg(x) # 0 everywhere on the domain.

Proof. The proof of all three parts is as follows:

1. If sup,cpm VR(2)T (f(2) + g(z)u) < oo, then the sup is attained
for some wu.

2. h becomes a (regular) barrier function for f(x) = f(z) + g(z)u(z)
and theorem from previous lecture applies.

3. (Sketch) First, note that u*(z) is well-defined since Vh(x)Tg(z) #
0 whenever h(z)T f(x) + a(h(z)) < 0by CBF condition. u*(z)
can be considered as a composition of 3 Lipschitz functions and is
therefore Lipschitz. Finally, we can verify that

Vh(z)"(f(2) + g(z)u*(2)) + a(h(z)) 8)

_ ) VR(@) T f(@) +a(h(x)) i Vi) f(2) + a(h(z)) 2 0 ©)
0 otherwise

> 0. (10)

Minimum Effort Control

From the above proof, specifically, the condition
Vh(z)T(f(2) + g(x)u* () + a(h(z)) (11)
_ {Vh(x)Tf(a:) +a(h(z)) if Vh(z)T f(z) +a(h(z)) >0

0 otherwise,

(12)
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we conclude that v*(z) is the “minimum effort” controller, i.e.,
u*(z) = argminueU(x)HuH%.

Example (Cart-Pole System): :

Recall the model of the cart-pole system from Lecture 16 (take m =
M={¢=1):

1 .
j=0= 1+'29(u—i—@zsine—gsi116’cost9>
s

(13)
1

b— -
1+ sin? 6

(ucosﬁézcost?sinﬁJngsinH)

where v = g is velocity. Take as the state = [y v 6 6]”. Suppose we
want v to satisfy

—L<v<L.

Choose
h(r) = 3 (=07 + 17) (1)
a(s) =vs, v>0. (15)

Then
Vh(z)L f(z) = Lyh(z) = ﬁ (92 sinf — gsin  cos 9) (16)
sin

Vi@ 9(@) = Loh(e) = o (17)
a(h(z)) = vh(x) (18)

and u*(z) constructed as above.

The figures below show results for xg = [yo vg 8 6o]7 = [00 7/2 0]
using the u*(z) from the theorem.

4 T

Barrier, v = 100
Barrier, y =1
No barrier, u = 0
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Controller Synthesis as Optimization Problem

For fixed x, the CBF constraint is affine in u! Then we can define a
convex program to compute a control input at each time instant:

u(z) =arg mﬂin C(p, )
(19)
subject to Vh(z)T f(z) + Vh(z)Tg(z)p > —a(h(z))

where C'(u, x) is some cost function that is convex in y for each fixed
state x.

Example 1: Suppose k(z) : R™ — R™ is some nominal feedback
controller designed for some other purpose (e.g., performance objec-
tives). Can choose C(y, 7) = || — k(z)||3. The result is a quadratic
program (with affine constraints) to compute u(x) at each x.

* Raises questions about solving a QP in real-time online, care must
be taken with discretization values, etc.

e Convex solvers are fast enough that they can be included “in-the-
loop” and have been for applications like stable bipedal locomo-
tion, quadrotor control
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Example 2: Consider our controlled pendulum:

_dfo
T |6

Let’s assume that we want to limit the velocity of the pendulum, we

T
—sin(z1) 4+ u

- -

0
B l? sin(0) +u

can define our safe set as:

C = {zst h(z) =02, —a3 >0}

Taking the derivative of h(z) we have:
h = —2xy1p = —21:2(—% sin(z1) 4+ u)

= szg sin(x1) =2z u
l ——
— 1}
Lyh g

Thus, safety can be enforced via the CBF condition:
Lih+ Lghu > —a(h)

where «(h) = ~h for some v > 0. This can be enforced along with
a tracking controller on the pendulum via the aforementioned QP

formulation*: * An implementation of this example is
provided online.

u* = minimize ||u — uges |3
u

subject to Lih+ Lghu+~h >0

For CBFs to be implemented in this way, we need to ensure
that Vh(z)Tg(x) = Lgh(z) # 0 for all z in the domain of interest.
However, this would preclude us from selecting a CBF to limit the
pendulum position, i.e., h(z) = 6%, — 22. In this case, we need
higher-order CBFs. We will cover these in the next lecture.


https://maegantucker.com/ME6402/code/cbf-pendulum-velocity/

	Control Barrier Functions

