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Overview:

• Introduce the Comparison Lemma

• Define Barrier Functions

Additional Reading:

• A. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control Barrier Functions: Theory and Applications,”
IEEE Transactions on Automatic Control, 2019.

Motivation

So far, we’ve discussed how to certify and enforce stability, including:

• Hartman-Grobman Theorem

• Center Manifold Theorem

• Lyapunov Analysis

• Feedback Linearization (input-output linearization or potentially
full-state feedback linearization)

• Control Lyapunov Functions

Stability can be thought of as certifying/enforcing that the system
will eventually converge to a desired state. But what about safety? In
comparison, safety can be thought of as certifying/enforcing that the
system will never enter a dangerous/unsafe state.

We will introduce a new class of functions called barrier functions
that can be used to certify and enforce safety. The key difference be-
tween Lyapunov functions and barrier functions can be summarized
as:

V̇ ≤ −α(V (x))︸ ︷︷ ︸
Stability

versus ḣ ≥ −α(h(x))︸ ︷︷ ︸
Safety

Barrier Functions

The goal of barrier functions is to render a set C positively invariant1, 1 Definition: Positively Invariant. A set C
is forward (positive) invariant if for every
x0 ∈ C, x(t) ∈ C for x(0) = x0 and all
t ≥ 0.

which allows us to conclude safety.

https://ieeexplore.ieee.org/document/8796030
https://ieeexplore.ieee.org/document/8796030
https://ieeexplore.ieee.org/document/8796030
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Definition: Safe. A system ẋ = f(x) is safe with respect to the set C if
the set C is forward invariant.

For ẋ = f(x), recall from Lecture 5 that we can check positive in-
variance of a set C by checking that n(x)T f(x) ≤ 0 for all x on the
boundary of C where n(x) is an outward pointing normal vector to
the set C.

n(x)

f(x)
C

If C = {x s.t. h(x) ≥ 0} for some continuously differentiable function
h, then n(x) = −∇h(x) whenever ∇h(x) ̸= 0, and then the previous
condition becomes:

∇h(x)T f(x) ≥ 0 for all x such that h(x) = 0. (1)

However, there are (at least) two potential problems with this ap-
proach:

• What if we have a function for which ∇h(x) = 0 for some x on the
boundary of C?

• Above condition is only at the boundary and is not good for creat-
ing controllers (everything is fine until suddenly it’s not)

Intuitive idea of barriers: make sure the system “slows down” as it
approaches the boundary of C.

• This lecture: barrier functions for autonomous systems

• Next lecture: control barrier functions for control-affine systems

Definition: Barrier Function. A function h with C = {x s.t. h(x) ≥ 0}
is a barrier function for ẋ = f(x) if there exists a locally Lipschitz
function2 α : R → R satisfying α(0) = 0 such that 2 When α is also increasing, it is some-

times called an extended class K function;
recall our definition of class K functions
from Lecture 12

∇h(x)T f(x) ≥ −α(h(x)) for all x ∈ Rn. (2)

Using Lie derivative notation, recall ∇h(x)T f(x) = Lfh(x) = ḣ (x).
Thus, this conditions is sometimes written as:

ḣ ≥ −α(h(x)) for all x ∈ Rn. (3)
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• In general, we think of α as being an increasing function, but this
is not needed for the theory on the next slide.

• Discussion of “local Lipschitz” requirement at end of lecture.

Intuition and typical use case: Consider a mobile robot, if we want
to keep the robot in some region C, we can construct a barrier func-
tion h(x) such that h(x) ≥ 0 everywhere inside of C and h(x) = 0
at the boundaries. Then, we can enforce Lfh+ Lghu ≥ −ch with
c > 0 being some constant. As a rule of thumb, if c = 0, then the
system must never move towards the boundary. If instead, c is very
large, then the system can move rapidly towards the boundary, but
the velocity must be still be zero at the boundary, and based on the
Lipschitz condition, the system will slow down as it appraoches the
boundary.

Theorem: Barrier Function. If h is a barrier function, then C = {x :
h(x) ≥ 0} is positively invariant3. 3 and thus the system is safe with

respect to C

The proof relies on the Comparison Lemma4 (introduced in Lecture 4 Details on the Comparison Lemma can
be found in Khalil, Section 4.4.

11). We will re-summarize this Lemma below.

Lemma: Comparison Lemma. Consider the scalar system

ż = g(z), z(0) = z0 (4)

with locally Lipschitz g. Let v(t) be some continuously differentiable func-
tion satisfying

v̇(t) ≥ g(v(t)) for all t ≥ 0, and (5)

v(0) ≥ z0. (6)

Then v(t) ≥ z(t) for all t.

Proof. (Sketch proof of barrier theorem)

1. Let x(t) be any system trajectory such that x(0) ∈ C and define
v(t) = h(x(t)). Then v̇(t) = ∇h(x(t))T f(x(t)) ≥ −α(h(x(t)) =

−α(v(t)), i.e.,
v̇(t) ≥ −α(v(t)).

2. Note that z(t) ≡ 0 is a trajectory of ż = −α(z) since the initial
condition z(0) = 0 is an equilibrium. Since v(t) ≥ z(0), by the
Comparison Lemma, v(t) ≥ z(t) = 0 for all t ≥ 0, which means
x(t) ∈ C for all t ≥ 0.



me 6402 – lecture 23 4

Example 1: Consider

ẋ1 = (a− (x2
1 + x2

2))x1 − x2 (7)

ẋ2 = (a− (x2
1 + x2

2))x2 + x1. (8)

In polar coordinates,

ṙ = r(a− r2), θ̇ = 1. (9)

Let C = {x : h(x) ≥ 0} with h(x) = a− (x2
1 + x2

2). Then

ḣ(x) = ∇h(x)T f(x) = 2(h(x)− a)h(x). (10)

For h to be a barrier function, we need to find a Lipschitz continuous
function α such that

ḣ(x) ≥ −α(h(x))

⇕
2(s− a)s ≥ −α(s)

Take

α(s) =

−2(s− a)s if s ≤ a/2

a2/2 if s > a/2
(11)

a/2
s

h(s) = 2(s− a)s

a/2
s

α(s)
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Example 2: Suppose V (x) is a Lyapunov function for the system
ẋ = f(x). Take h(x) = C − V (x) for some C. Then

C = {x s.t. h(x) ≥ 0} = {x s.t. V (x) ≤ C} (12)

We take α(s) = 0 and establish positive invariance for C, a sublevel
set of V . This choice of α means that trajectories never move closer to
the boundary of C, as expected from Lyapunov theory.

Example 3: Consider

ẋ1 = (−a+ bx2
2)x1 (13)

ẋ2 = (cx2
1 − d)x2. (14)

We want to show that the union of the 1st and 3rd quadrants is in-
variant, i.e., C = {(x1,x2) s.t. h(x) ≥ 0} with h(x) = x1x2. We
have

ḣ(x) = ∇h(x)T f(x) = ẋ1x2 + x1ẋ2 (15)

= x1x2(−a+ bx2
2) + x1x2(cx

2
1 − d). (16)

Note that, since (
√
bx2 −

√
cx1)

2 ≥ 0, then bx2
2 + cx2

1 ≥ 2
√
bcx1x2 and

therefore

∇h(x)T f(x) ≥ (−a− d+ 2
√
bch(x))h(x). (17)

Take α(s) = −(−a− d+ 2s
√
bc)s.

x

α(s)

• Note that α(0) = 0, as required. α is not increasing, but this is not
an issue.

Note: Local Lipschitzness of α is required for the Comparison Lemma
to apply:

Example: Take ẋ = −1, h(x) = x3 so C = {x : h(x) ≥ 0}. Then
ḣ(x) = −h′(x) = −3x2 = −3h(x)2/3. It is tempting to take α(s) =

3s2/3, a well-defined function satisfying α(0) = 0, and it is even
increasing for s ≥ 0. But it is not Lipschitz, and the comparison
lemma does not apply.
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x

α(s) = 3s2/3

Further discussion of Lipschitzness5: 5 See R. Konda, A. Ames, S. Coogan,
"Characterizing safety: minimal barrier
functions from scalar comparison
systems," IEEE Control Systems Letters,
2020, for more details

• It is possible to weaken Lipschitz condition: The key is to ensure
that, even if the comparison system ż = −α(z) with z(0) = z0 has
multiple solutions, all solutions remain nonnegative.

• An alternative assumption is to require that ∇h(x) ̸= 0 whenever
h(x) = 0 so that ∇h(x) always provides a valid normal vector
and our original technique (sometimes called Nagumo’s theorem)
applies. Then, the Comparison Lemma is not required.

• For this alternative, the proof of invariance does not require any
other properties of α besides α(0) = 0.

• Barriers are a hot topic, but beware that many papers fail to explic-
itly make either assumption.
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