
ME 6402 – Lecture 22
convex optimization problems

April 1 2025

Overview:

• Introduce important classes of convex optimization problems

Additional Reading:

• S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

Recall: Convex functions and sets

Definition: Convex function. A convex function f : Rn → R satisfies
the following condition for all x, y ∈ Rn and all 0 ≤ θ ≤ 1:

f(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y)

x

Definition: Convex Set. A convex set C satisfies the following condi-
tion:

if x, y ∈ C then θx+ (1 − θ)y ∈ C for all 0 ≤ θ ≤ 1

Example 1:

The probability simplex is the set of vectors x ∈ Rn such that x ≥ 0
and 1Tx = 1. It is a convex set.

Let x1 and x2 be two elements of the probability simplex. For any
0 ≤ theta ≤ 1,

θx1 + (1 − θ)x2 ≥ 0

and

1T (θx1 + (1 − θ)x2) = θ1Tx1 + (1 − θ)1Tx2 = θ+ (1 − θ) = 1
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Example 2:

The set of symmetric matrices in Rn×n is a vector space (what is its
dimension?). The subset of symmetric positive semidefinite matrices
is a convex subset of this vector space. In fact, for any P.S.D. matrices
X1 and X2, and any θ1 ≥ 0, and θ2 ≥ 0, θ1X1 + θ2X2 is also P.S.D.

xT (θ1X1 + θ2X2)x = θ1 x
TX1x︸ ︷︷ ︸
≥0

+θ2 x
TX2x︸ ︷︷ ︸
≥0

≥ 0

for all x.

Convex Optimization

Recall the optimization problem

minimize
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

The above optimization problem is convex if f0 and all fi’s are con-
vex. In this case, the feasible set is a convex set.

Example:

Least Squares is a convex optimization problem:

minimize
x

∥Ax− b∥2
2

We know that ∥ · ∥2 is convex because it is a norm (we proved this in
the last lecture), ∥ · ∥2

2 is also convex (convince yourself of this), and
composition with affine transformation preserves convexity (we also
proved this in the last lecture).

• This is an unconstrained optimization problem since there are no
constraints

• Optimization problems rarely have closed form solutions, but the
least squares problem does: x = (ATA)−1AT b

Linear Optimization Programs (LP)

minimize
x

cTx

s.t. aTi x ≤ bi, i = 1, . . . ,m
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• Linear programs are a class of optimization problems that can be
solved very efficiently

• If feasible set is compact, then vertices of feasible region contain
optimal points

Quadratic Optimization Programs (QP)

Quadratic costs give rise to quadratic optimization problems. Quadratic
programs (QPs) are a class of optimization problems that have
quadratic cost with affine constraints:

minimize
x

1
2
xTPx+ qTx+ r

s.t. aTi x ≤ bi, i = 1, . . . ,m

where P is positive semidefinite, P ⪰ 0.

Quadratically Constrained Quadratic Optimization Programs (QCQP)

A QCQP has quadratic cost with quadratic constraints:

minimize
x

1
2
xTP0x+ qT0 x+ r0

s.t.
1
2
xTPix+ qTi x+ ri, i = 1, . . . ,m

where all Pi’s are positive semidefinite.

• Least squares is a QP because ∥Ax− b∥2
2 = xTATAx− 2bTAx+

bT b, with ATA ⪰ 0.

• All LPs are QPs, all QPs are QCQPs.

Second-Order Cone Programs (SOCP)

minimize
x

fTx

s.t. ∥Aix+ bi∥2 ≤ cTi x+ di, i = 1, . . . ,m

• If all ci’s are zero, then SOCP reduces to QCQP

• If all Ai’s are zero, then SOCP reduces to LP
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Linear matrix inequalities (LMIs) and semidefinite programs (SDPs)

A twist: Instead of scalar inequality (≤) in constraints, what if we
allowed for matrix inequalitie (⪯)?

First form:

minimize
x

cTx

s.t. x1F1 + x2F2 + · · ·+ xnFn +G ⪯ 0

where F1, . . . ,Fn,G are all symmetric matrices.

• The inequality above is called a linear matrix inequality (LMI)

• An optimization problem is a semidefinite program (SDP) if the
constraints are LMIs and the cost is linear

• When F1, . . . ,Fn,G are actually scalars, we recover a standard
affine constraint fTx+ g ≤ 0 (LP)

Let’s check that the constraint x1F1 +x2F2 + · · ·+xnFn+G ⪯ 0 leads
to a convex feasible set. To do this, let x1,x2, . . . ,xn and x̂1, x̂2, . . . , x̂n
be two sets satisfying the semidefinite inequality. Then,

(θx1 + (1 − θ)x̂1)F1 + · · ·+ (θxn + (1 − θ)x̂n)Fn +G

= θ(x1F1 + · · ·+ xnFn +G) + (1 − θ)(x̂1F1 + · · ·+ x̂nFn +G)

⪯ 0

Thus the constraint leads to a convex feasible set.

Note: Multiple LMIs can be combined into one LMI via block diago-
nalization:

x1F1 + x2F2 + · · ·+ xnFn +G ⪯ 0

x1F̂1 + x2F̂2 + · · ·+ xnF̂n + Ĝ ⪯ 0

is the same as

x1

[
F1 0
0 F̂1

]
+ · · ·+ xn

[
Fn 0
0 F̂n

]
+

[
G 0
0 Ĝ

]
⪯ 0

Second form1: 1 Recall that the first form of our SDP
was

minimize
x

cT x

s.t. x1F1 + x2F2 + · · ·+ xnFn +G ⪯ 0

minimize
x

trace(CX)

s.t. trace(AiX) = bi, i = 1, . . . ,m

X ⪰ 0

• These two forms can be shown to be equivalent
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• Seemingly more general constraints can be reduced to LMI
constraints of the form above.

• In particular, matrix variables that appear linearly in semidefi-
nite constraints are allowed.

Again, let’s check that the constraints trace(AiX) = bi, with X ⪰ 0
leads to a feasible set. To do this, let X1 and X2 both be feasible.
Then,

θX1 + (1 − θ)X2 ⪰ 0

and

trace(Ai(θX1 + (1 − θ)X2))

= θ trace(AiX1) + (1 − θ) trace(AiX2)

= θbi + (1 − θ)bi = bi

for all 0 ≤ θ ≤ 1.

LMI Examples

Example 1: The Lyapunov inequality is given by L(X) = ATX +XA

and we know A is Hurwitz if and only if there exists X ≻ 0 such that
L(X) ≺ 0. L(X) is linear in X . To see that, consider X = aX1 + bX2

and notice that

L(X) = AT (aX1 + bX2) + (aX1 + bX2)A

= a(ATX1 +X1A) + b(ATX2 +X2A)

= aL(X1) + bL(X2)

Thus, L(X) ⪯ −εI for some ε > 0 is a LMI constraint in the variable
X .

Example 2: Consider ẋ = A(t)x where A(t) switches from among
the set {A1, . . . ,Am}

• Even if all Ai are Hurwitz, stability is not guaranteed

• How could we prove asymptotic stability of x = 0?

One approach: Find a common Lyapunov function V (x) = xTPx that
works for all Ais. Pose as an SDP:

minimize
P

trace(P )

s.t. PAi +AT
i P ⪯ −εI , i = 1, . . . ,m P ⪰ I
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Solving convex optimization problems

Even though analytic solutions to convex optimization problems
rarely exist, solvers have become so good and so fast that it is com-
mon to think of exact solutions to convex optimization problems as
being readily available.

• CVX, CVXPY, CVXOPT, YALMIP are all basic purpose packages
for solving convex optimization problems2 2 Note: As a student, you all have free

axis to GITHUB Copilot which can
help you try out new coding languages
faster by providing help with syntax.

• Specialized functions such as MATLAB’s quadprog for specific
classes of problems (quadratic, in this case)

Example: CVX provides easy coding of convex optimization prob-
lems in MATLAB (or CVXPY in Python). For example, consider the
following Least Squares QP:

minimize
x

∥Ax− b∥2
2

s.t. Cx ≤ d

this can be implemented as

cvx_begin

variable x(n)

minimize( norm(A*x - b, 2) )

subject to

C*x <= d

cvx_end


	Recall: Convex functions and sets
	Convex Optimization

