ME 6402 — Lecture 22
CONVEX OPTIMIZATION PROBLEMS

April 1 2025

Overview:
¢ Introduce important classes of convex optimization problems
Additional Reading;:

¢ S.Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

Recall: Convex functions and sets

Definition: Convex function. A convex function f : R” — R satisfies
the following condition for all z,y € R™ and all0 < § < 1:

f0z+(1—=0)y) <0f(x)+(1—-0)f(y)

Definition: Convex Set. A convex set C satisfies the following condi-
tion:
ifr,yeCthenfzr+ (1—0)ycCforall0<6H<1

Example 1:

The probability simplex is the set of vectors x € IR" such that 2 > 0
and 17z = 1. It is a convex set.

Let 1 and x, be two elements of the probability simplex. For any
0 <theta <1,
Ox1+ (1 —0)xp >0

and

17021+ (1= 0)an) =017 + (1 =1 2y =04+ (1-0) =1
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Example 2:

The set of symmetric matrices in R”*™ is a vector space (what is its
dimension?). The subset of symmetric positive semidefinite matrices
is a convex subset of this vector space. In fact, for any P.5.D. matrices
X and X,, and any f1 > 0,and 6, > 0, 6; X7 + 6, X5 is also P.S.D.

xT(91X1 + 92X2):L‘ =60 mTXlx +6; ,TTXZCL’ >0
S~—— ~——

>0 >0

for all z.

Convex Optimization

Recall the optimization problem
minimize fo(z)
xT

st. fi(z) <0, i=1,...,m

The above optimization problem is convex if fy and all f;’s are con-
vex. In this case, the feasible set is a convex set.

Example:

Least Squares is a convex optimization problem:

minimize || Az — b||3
T

We know that || - ||2 is convex because it is a norm (we proved this in
the last lecture), || - ||3 is also convex (convince yourself of this), and
composition with affine transformation preserves convexity (we also
proved this in the last lecture).

¢ This is an unconstrained optimization problem since there are no
constraints

* Optimization problems rarely have closed form solutions, but the
least squares problem does: z = (A7 A)~1ATp

Linear Optimization Programs (LP)

minimize !z
X

s.t. aZTa: <b, i=1,...,m

2
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® Linear programs are a class of optimization problems that can be
solved very efficiently

¢ If feasible set is compact, then vertices of feasible region contain
optimal points

Quadratic Optimization Programs (QP)

Quadratic costs give rise to quadratic optimization problems. Quadratic
programs (QPs) are a class of optimization problems that have
quadratic cost with affine constraints:

1
minimize ExTPa: + qTa: +r
xX
T S
st. a;jx<b;, i=1,...,m

where P is positive semidefinite, P > 0.

Quadratically Constrained Quadratic Optimization Programs (QCQP)

A QCQP has quadratic cost with quadratic constraints:

S 1
minimize E:cTPox + qg T+
x

1
s.t. ExTPix—l—qiTx—i—ri, i=1,...,m

where all P;’s are positive semidefinite.

e Least squares is a QP because || Az — b||3 = 2T AT Az — 267 Az +
T, with ATA = 0.

e All LPs are QPs, all QPs are QCQPs.

Second-Order Cone Programs (SOCP)
minimize fo
T
s.t. ‘|Aim+bi||2§0;$+di, i=1,...,m

e If all ¢;’s are zero, then SOCP reduces to QCQP

e [f all A;’s are zero, then SOCP reduces to LP
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Linear matrix inequalities (LMIs) and semidefinite programs (SDPs)
A twist: Instead of scalar inequality (<) in constraints, what if we
allowed for matrix inequalitie (<)?
First form:
minixmize o
st. r1Fl+xf+ -4 apnFn+G =0

where Fy, ..., F, G are all symmetric matrices.

¢ The inequality above is called a linear matrix inequality (LMI)

* An optimization problem is a semidefinite program (SDP) if the
constraints are LMIs and the cost is linear

e When F1,..., F,, G are actually scalars, we recover a standard
affine constraint f7z 4+ g < 0 (LP)

Let’s check that the constraint z1Fy + 20 F> + - - - + xp Fp, + G < 0 leads
to a convex feasible set. To do this, let x1, x5, ..., 2, and £1,%2,...,En
be two sets satisfying the semidefinite inequality. Then,

Ox1+(1-0)2)F1+- -+ 0y +(1—0)2,)Fr + G
<0

Thus the constraint leads to a convex feasible set.

Note: Multiple LMIs can be combined into one LMI via block diago-
nalization:

o+ a4+ +G X0
o P+ a4 o B+ G <0

is the same as

F 0 F, 0 G 0
N PO RS G IS .| =0
0 B 0 F, 0 &
Second form?: * Recall that the first form of our SDP
‘was
minimize trace(CX S T
o ( ) mlI’ll;l‘llZe cC T
st. trace(A4;X)=1b;, i=1,...,m st. otz + ta,Fn +G =<0

X>0

* These two forms can be shown to be equivalent
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® Seemingly more general constraints can be reduced to LMI
constraints of the form above.

¢ In particular, matrix variables that appear linearly in semidefi-
nite constraints are allowed.

Again, let’s check that the constraints trace(4;X) = b;, with X > 0
leads to a feasible set. To do this, let X; and X, both be feasible.
Then,

X1+ (1—-60)X, =0

and
trace(A4;(0X1 + (1 —0)Xy))
= ftrace(A; X1) + (1 — 0) trace(A; X»)
= 0b; + (1 — H)bl =1b;

forall0 <6 <1.

LMI Examples

Example 1: The Lyapunov inequality is given by L(X) = AT X + XA
and we know A is Hurwitz if and only if there exists X > 0 such that
L(X) < 0. L(X) is linear in X. To see that, consider X = aX; + bX;
and notice that

L(X) = AT (aX] +bX2) + (aX] 4+ bX2) A
= a(ATX] + X1A) + b(AT X, + X, A)
= aL(X1) +bL(X>)

Thus, L(X) = —el for some ¢ > 0 is a LMI constraint in the variable
X.

Example 2: Consider & = A(t)x where A(¢) switches from among
the set {A41,..., A}

* Even if all A; are Hurwitz, stability is not guaranteed

e How could we prove asymptotic stability of z = 0?

One approach: Find a common Lyapunov function V (z) = 2! Pz that
works for all A;s. Pose as an SDP:

mini}gnize trace(P)

st. PA+ATP < —I, i=1,...,m P-1
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Solving convex optimization problems

Even though analytic solutions to convex optimization problems
rarely exist, solvers have become so good and so fast that it is com-
mon to think of exact solutions to convex optimization problems as
being readily available.

e CVX, CVXPY, CVXOPT, YALMIP are all basic purpose packages

for solving convex optimization problems> 2Note: As a student, you all have free
axis to GITHUB Copilot which can
* Specialized functions such as MATLAB’s quadprog for specific help you try out new coding languages

L. . faster b iding help with syntax.
classes of problems (quadratic, in this case) aster by provicing aetp With syntax

Example: CVX provides easy coding of convex optimization prob-
lems in MATLAB (or CVXPY in Python). For example, consider the
following Least Squares QP:

minimize || Az — b|)3
T
st. Cax<d

this can be implemented as

cvx_begin
variable x(n)
minimize( norm(Axx - b, 2) )
subject to
Cxx <= d
cvx_end
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