
ME 6402 – Lecture 21
a primer on convex optimization

March 27 2025

Overview:

• Define optimization problems

• Define convex functions and sets

• Define convex optimization problems

Additional Reading:

• S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

Motivation

Our motivation for optimization-based control is the formulation:

u∗ := k(x) =argminu ∥u∥2

subject to
∂V

∂x
(f(x) + g(x)u) ≤ −εV (x)

This formulation is sometimes called a control Lyapunov function
quadratic program (CLF-QP). Explicitly, the goal is to find the small-
est control input u that stabilizes our system and additionally ensures
that the Lyapunov function V (x) decreases at a rate of at least εV (x).

To understand how this problem is solved, and when/how we can
add additional constraints (such as torque limits) to this problem,
we will first dive deeper into optimization problems and convex
functions and sets.

Optimization Problems
If we are instead interested in max-
imizing a function f̃0(x), we simply
define f0(x) = −f̃0(x) to change to a
minimization problem.

We often encounter problems of the form

minimizex f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
(1)

Equality constraint f (x) = 0 is allowed
by including two constraints f (x) ≤ 0
and −f (x) ≤ 0

where:

• x ∈ Rn is an optimization variable,

• f0 is the objective function, and

• fi(x) are constraint functions.
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The optimal value of f0(x) is the (limit of the) smallest value obtained
by f0(x) on the feasible set. A point that achieves the optimal value
(i.e.,argmin) is an optimal point.

Example

Minimum effort stabilization from CLF:
As we mentioned, given the system ẋ = f(x) + g(x)u and CLF V (x),
we can use the optimization-based controller

k(x) =argminu ∥u∥2

subject to
∂V

∂x
(f(x) + g(x)u) ≤ −εA(x),

(2)

• ε is user chosen

• A(x) is some positive definition function. A(x) = xTx or A(x) =

V (x) are common choices

• Generally cannot consider a strict inequality constraint like V̇ (x) <

0, hence the need for εA(x)

Example 2

Finding polynomial Lyapunov functions:
Given system ẋ = f(x), solve

c∗ =argminc 0

subject to V (x) ≥ ε1A(x) ∀x
∂V

∂x
f(x) ≤ −ε2A(x) ∀x

(3)

where, e.g., x ∈ R2, V (x) = c1x
4
1 + c2x

3
1x2 + c3x

2
1x

2
2 + c4x1x

3
2 + c5x

4
2 +

c5x
3
1 + . . .+ cn−2x1 + cn−1x2 + cn

• No cost =⇒ feasibility question

• “∀x” =⇒ infinite, uncountable number of constraints
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Convex functions and sets

A convex function f : Rn → R satisfies for all x, y and all 0 ≤ θ ≤ 1:

f(θx+ (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (4)

f(x)

f(y)

x

Example

Can we prove that linear functions are convex? Consider f(x) = cTx

for fixed c ∈ Rn:

f(θx+ (1 − θ)y) = cT (θx+ (1 − θ)y) (5)

= θcTx+ (1 − θ)cT y (6)

= θf(x) + (1 − θ)f(y), (7)

so f is convex (satisfies the required inequality with equality for all
θ ∈ [0, 1]).

First Order and Second Order Tests for Convexity
• The notation M ⪰ 0 or M ≻ 0

for a square symmetric matrix M
means that M is positive (semi)definite
(PD/PSD). Recall that M is PSD
(respectively, positive definite) if
xTMx ≥ 0 (respectively, xTMx > 0
for all x).

Fact. When f is once differentiable, f is convex if and only if f(y) ≥
f(x) +∇f(x)T (y− x) for all x, y.
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Fact. When f is twice differentiable, f is convex if and only if ∇2f(x) ⪰
0 for all x.

Example 1:

Consider the quadratic function

f(x) =
1
2
xTPx+ qTx+ r, P = PT (8)

Then ∇2f(x) = P for all x, so quadratic functions are convex if and
only if P ≥ 0, i.e., P is a positive semidefinite matrix.

Example 2:

Any norm1 ∥ · ∥ : Rn → R≥0 is convex: 1 Recall that a norm ∥ · ∥ satisfies:

1. ∥x + y∥ ≤ ∥x∥ + ∥y∥ (Triangle
inequality)

2. ∥ax∥ = |a|∥x∥
3. if ∥x∥ = 0 then x = 0

∥θx+ (1 − θ)y∥ ≤ ∥θx∥+ ∥(1 − θ)y∥ = θ∥x∥+ (1 − θ)∥y∥ (9)

Example 3:

If f is convex, then

g(x) = f(Ax+ b) (10)

is convex for any A, b:

g(θx+ (1 − θ)y) = f(A(θx+ (1 − θ)y) + b) (11)

= f(θ(Ax+ b) + (1 − θ)(Ay+ b)) (12)

≤ θf(Ax+ b) + (1 − θ)f(Ay+ b) (13)

= θg(x) + (1 − θ)g(y). (14)

Convex Sets

A convex set C satisfies

whenever x1,x2 ∈ C, then θx1 + (1 − θ)x2 ∈ C for all 0 ≤ θ ≤ 1. (15)

Convex Not convex
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Example: Convex Sets as Sublevel Sets of Convex Functions

Any α-sublevel set Cα = {x : f(x) ≤ α} of a convex function is
convex.

Proof. Choose x, y ∈ Cα so that f(x) ≤ α and f(y) ≤ α. By convexity,
f(θ(x) + (1 − θ)y) ≤ α for any 0 ≤ θ ≤ 1, and hence θx+ (1 − θ)y ∈
Cα.

Note: The converse does not hold.

Convex Optimization

Optimization problem from before:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m
(16)

The above optimization problem is convex if f0 and all fi’s are con-
vex.

• In this case, the feasible set is a convex set.

Example: Equality Constraints

Convex optimization problems may include equality constraints, but
only if they are affine, i.e., of the form Ax+ b = 0.

Proof. To include an equality constraint fi(x) = 0, we add fi(x) ≤ 0
and −fi(x) ≤ 0 as inequality constraints. To be convex, we require
f(x) and −f(x) to be convex. The only such functions are affine. To
see this, we assume fi is differentiable. Then convexity of fi and −fi
means:

fi(y) ≥ f(x) +∇fi(x)
T (y− x) (17)

and

−fi(y) ≥ −fi(x)−∇f(x)T (y− x), (18)

so that fi(y) = fi(x) +∇fi(x)
T (y− x) for any x, y, i.e., fi is affine.
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Theorem: Feasibility of a convex optimization problem. For a convex
optimization problem, a feasible point x is optimal if and only if ∇f0(x)

T (y−
x) ≥ 0 for all feasible y.

Proof. (if) Since f0 is convex, for any x, y.

f0(y) ≥ f0(x) +∇f0(x)
T (y− x). (19)

Let x be a feasible point such that ∇f0(x)
T (y − x) ≥ 0 for all feasible

y. Then for any feasible y ̸= x, using (19), f0(y) ≥ f0(x) and x is
optimal.

(only if) Now suppose x is optimal but there is some feasible y such
that ∇f0(x)

T (y − x) < 0. The point zθ = θy + (1 − θ)x must also
be feasible since the feasible set is convex. For small θ, f(zθ) < f(x)

since d
dθ f0(zθ)|θ=0 = ∇f0(zθ)

T (y− x)
∣∣
θ=0 = ∇f0(x)

T (y− x) < 0.

Optimality for Unconstrained Convex Optimization Problems

When all y are feasible, the above condition reduces to: x is optimal if
and only if

∇f0(x) = 0. (20)

Example

Consider
minimizex

1
2
xTPx+ qTx+ r (21)

where P ⪰ 0. Then x is optimal if and only if Px+ q = 0. Three
cases:

1. If q ̸∈ Range(P ), no solution. In this case, objective function is
unbounded (below)

2. If P is nonsingular (i.e.,P ≻ 0), then x∗ = −P−1q is unique
solution

3. If P is singular but q ∈ Range(P ), then set of optimal points is
affine subspace

{x s.t. Px = −q} =

{x∗ + y s.t. y ∈ Null(P ), x∗ is any vector such that Px∗ = −q}
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