
ME 6402 – Lecture 20
control lyapunov functions

March 25 2025

Overview:

• Feedback linearization for MIMO Systems

• Define Control Lyapunov Functions

• Present Sontag’s Universal Formula for Smooth Stabilization

Additional Reading:

• E. Sontag, 1983

• Z. Arstein, 1978

Multi-Input Multi-Output Systems

Recall that a MIMO system1 with m inputs and m outputs has in- 1 A MIMO system with m inputs and m

outputs:

ẋ = f (x) +
[
g1(x) . . . gm(x)

] 
u1
...

um


yi = hi(x), i = 1, · · · ,m.

dividual relative degree ri for each output (the number of times we
need to differente yi until at least one input appears). Then, the sys-
tem can be input-output linearized via the control law:

u = A(x)−1(−B(x) + v)

where A and B are of the form:
y
(r1)
1
...

y
(rm)
m

=


L
r1
f h1(x)

...
Lrm
f hm(x)


︸ ︷︷ ︸

=: B(x)

+


Lg1L

r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

...
...

Lg1L
rm−1
f hm(x) · · · LgmLrm−1

f hm(x)


︸ ︷︷ ︸

=: A(x)


u1
...

um

 .

This input-output linearizing controller creates m decoupled chains
of integrators:

y
(ri)
i = vi, i = 1, . . . ,m.

Definition: Vector Relative Degree. A system has vector relative degree
{r1, · · · , rm} if the matrix A(x) defined above is nonsingular.

If the system has vector relative degree {r1, · · · , rm}, then r := r1 +

· · ·+ rm ≤ n and the output coordinates of the system are:

η := [h1(x) Lfh1(x) · · ·Lr1−1
f h1(x) · · · hm(x) Lfhm(x) · · ·Lrm−1

f hm(x)]T

As in normal form discussed in Lecture 17, one can find n− r addi-
tional functions z1(x), · · · , zn−r(x) so that x 7→ (z, η) is a complete
coordinate transformation.
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Full-state feedback linearization amounts to finding m output func-
tions h1, · · · ,hm such that the system has vector relative degree
{r1, · · · , rm} with r1 + · · · + rm = n. Necessary and sufficient
conditions for the existence of such functions, analogous to those
in Lecture 18 for SISO systems, are available2. 2 see, e.g., Sastry, Proposition 9.16

Example:

Consider the following model of a planar vertical take-off and landing
(PVTOL) aircraft3 3 Sastry, Section 10.4.2

ẍ = − sin(θ)u1 + µ cos(θ)u2

z̈ = cos(θ)u1 + µ sin(θ)u2 − 1

θ̈ = u2,

where µ is a constant that accounts for the coupling between the
rolling moment and translational acceleration, and −1 in the second
equation is the gravitational acceleration, normalized to unity by
appropriately scaling the variables.

x

θ

u1

z

Taking our state variable to be x = [x, ẋ, z, ż, θ, θ̇]T , we can write the
system the control affine form:

ẋ =



ẋ

ẍ

ż

z̈

θ̇

θ̈


=



ẋ

0
ż

−1
θ̇

0


+



0 0
− sin(θ) µ cos(θ)

0 0
cos(θ) µ sin(θ)

0 0
0 1


[
u1

u2

]

If we take x and z as the two outputs we can observe that each out-
put has relative degree 2 (r1 = 2, r2 = 2):[

ẍ

z̈

]
=

[
0
−1

]
+

[
− sin θ µ cos θ
cos θ µ sin θ

]
︸ ︷︷ ︸

A(θ)

[
u1

u2

]
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where A(θ) is invertible when µ ̸= 0:

A−1(θ) =

[
− sin θ cos θ
1
µ cos θ 1

µ sin θ

]
.

Thus the systems has vector relative degree {2, 2}. This implies that
when µ ̸= 0, and the input-output linearizing controller is[

u1

u2

]
=

[
− sin θ cos θ
1
µ cos θ 1

µ sin θ

]([
0
1

]
+

[
v1

v2

])
.

Note, the system will have zero dynamics since r < n. Since our
output coordinates are aligned with our state variables, we know that
the remaining two zero dynamic coordinates will be θ and θ̇. We can
solve for the zero dynamics by substituting u∗2 = 1

µ sin θ into our
dynamics for θ̈:

θ̈ =
1
µ

sin θ.

The system is nonminimum phase for µ > 0, since θ = 0 is unstable.

Control Lyapunov Functions

Motivation: Feedback linearization stabilizes systems by “cancelling”
the nonlinear dynamics and forcing a system to act like a linear
one. While this is better than simply “ignoring” nonlinear dynam-
ics (through classic linearization), it still does not take advantage of
the natural dynamics of the system. This fundamental limitation is
addressed through the use of control Lyapunov functions.

Intro: We had previously utilized Lyapunov for analysis of the system

ẋ = f(x), f(0) = 0 (1)

Here, the goal was to find a positive definite Lyapunov function V (x)

such that V̇ (x) is negative definite to prove asym. stability of x = 0.

What about controlling for (asymptotic) stability?

• An idea: For

ẋ = f(x) + g(x)u (2)

and a candidate positive definite Lyapunov function V (x), choose
u such that V̇ is negative definite
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Definition: Control Lyapunov Function. A positive definition function
V (x) is a (global) control Lyapunov function (CLF) for (2) if ∀x ̸= 0,
∃ u such that

V̇ (x) =
∂V

∂x
[f(x) + g(x)u] < 0. (3)

Equivalently,

∂V

∂x
g(x) = 0 and x ̸= 0 =⇒ ∂V

∂x
f(x) < 0. (4)

In today’s lecture we will introduce a closed-form expression for a
CLF, known as Sontag’s formula. In the next lecture, we will instead
solve for u through convex optimization.

If u ∈ R, Sontag’s formula is:

u = ϕ(x) =

−
[(

∂V
∂x f

)
+
√
(
(
∂V
∂x f

)2
+
(
∂V
∂x g

)4
)

]
/
(
∂V
∂x g

)
if ∂V

∂x g ̸= 0

0 if ∂V
∂x g = 0

(5)

Note:

• Choosing u = ϕ(x) asymptotically stabilizes the origin (Proof is
shown next).

• Formula seems complicate. Why? (Examples shown later)

Proof. Compute V̇ (x) for x ̸= 0:

• If ∂V
∂x g(x) = 0, then

V̇ (x) =
∂V

∂x
f(x) < 0

for any x ̸= 0 by definition of CLF

• If ∂V
∂x g(x) ̸= 0, then

V̇ (x) =
∂V

∂x
[f(x) + g(x)ϕ(x)] = −

√(
∂V

∂x
f

)2
+

(
∂V

∂x
g

)4
< 0

Therefore, x ̸= 0 implies V̇ (x) < 0, which shows asymptotic
stability.
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Example 1:

Consider
ẋ = −x3 + u

with CLF V (x) = 1
2x

2. Let’s consider the following controllers:

1. u ≡ 0:

2. Feedback linearizing controller

3. u = ϕ(x) from Sontag’s formula

Controller 1:

V̇ (x) =
∂V

∂x
ẋ = x(−x3) = −x4 < 0 for x ̸= 0 (6)

so the system is globally asymptotically stable but not exponentially
stable4. 4 Recall that exponential stability

requires a linear bound on V̇ in terms
of V itself, i.e.,:

V̇ (x) ≤ −cV (x)

for some c > 0

Controller 2: With the goal of driving x → 0, we can choose our
output y = x. This implies that r = 1 (since we need to differentiate x

once to get to u). The feedback linearizing controller would be

u = x3 + v

Therefore, choosing v = −k1x for some k1 > 0 yields the closed loop
system:

ẋ = −k1x =⇒ V̇ = x(−k1x) = −k1x
2

hence the system is now exponentially stable.

Controller 3: To apply Sontag’s formula, we need to compute the
terms:

∂V

∂x
f(x) = x(−x3) = −x4,

∂V

∂x
g(x) = x(1) = x

Plugging these into Sontag’s formula yields:

u = −1/x
(
−x4 +

√
x8 + x4

)
= −1/x

(
−x4 + x2

√
x4 + 1

)
= x3 − x

√
x4 + 1
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This control law yields the closed-loop system:

V̇ (x) = x
(
−x3 + x3 − x

√
x4 + 1

)
= −x2

√
x4 + 1

≤ −x2

where the last inequality follows from the fact that
√
x4 + 1 ≥ 1.

Therefore, the system is also globally exponentially stable.

A comparison of the two controllers is shown below:

−3 −2 −1 1 2 3

−4

−2

2

4

x

u
Feedback linearization

Sontag’s formula

In general, Sontag’s formula can keep useful nonlinearities (like −x3),
while feedback linearization cancels all nonlinearities. However, there
is no universal theorem that Sontag’s formula is always “better”.

Example 2:

Consider the system
ẋ = x− x3 + u

The feedback linearizing controller for this system is:

u = −x+ x3 − k1x

for any k1 > 0.
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A CLF (using Sontag’s formula) for this system is

u =
x(−x+ x3)− x

√
x2(x− x3)2 + x4

x

= −x+ x3 −
√
(1 − x2)2 + 1

A comparison of the two controllers is shown below:

−3 −2 −1 1 2 3

−4

−2

2

4

x

u
Feedback linearization

Sontag’s formula
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