ME 6402 — Lecture 20
CONTROL LYAPUNOV FUNCTIONS

March 25 2025

Overview:

¢ Feedback linearization for MIMO Systems

¢ Define Control Lyapunov Functions

® Present Sontag’s Universal Formula for Smooth Stabilization
Additional Reading;:

¢ E. Sontag, 1983

e Z. Arstein, 1978

Multi-Input Multi-Output Systems

Recall that a MIMO system' with m inputs and m outputs has in-
dividual relative degree r; for each output (the number of times we
need to differente y; until at least one input appears). Then, the sys-
tem can be input-output linearized via the control law:

u=A(z) ' (=B(x) +v)
where A and B are of the form:
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=: B(z) =: A(x)
This input-output linearizing controller creates m decoupled chains

of integrators:
(rs)

Y, =g, i1=1,..

., M.

Definition: Vector Relative Degree. A system has vector relative degree
{r1, -

If the system has vector relative degree {rq, - -

,Tm } if the matrix A(x) defined above is nonsingular.

-, rm}, thenr := r; +
-+ -+ 7y, < n and the output coordinates of the system are:

n:=[lh(x) Lyhi(x) - L ()

7 han(2) Lghm(z) - L7 hyy,

f
As in normal form discussed in Lecture 17, one can find n — r addi-
tional functions z1(x), - -, zp—r(x) so that z +— (z,7) is a complete

coordinate transformation.

* A MIMO system with m inputs and m
outputs:
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&= f(z)+ [g1(2) gm ()]
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Full-state feedback linearization amounts to finding m output func-

tions hyq, - -

{ri, -, rm}withry + -+ 7,

-, hy, such that the system has vector relative degree
n. Necessary and sufficient

conditions for the existence of such functions, analogous to those

in Lecture 18 for SISO systems, are available®.

Example:

*see, e.g., Sastry, Proposition 9.16

Consider the following model of a planar vertical take-off and landing

(PVTOL) aircraft3

& = —sin(f)u; + pcos()uy
Z = cos(f)ug + psin(f)uy — 1
9. - uz,

3 Sastry, Section 10.4.2

where p is a constant that accounts for the coupling between the

rolling moment and translational acceleration, and —1 in the second

equation is the gravitational acceleration, normalized to unity by

appropriately scaling the variables.

U

> T

Taking our state variable to be x = [, 4, 2, 2,6, Q}T, we can write the

system the control affine form:

x T 0 0
by —sin(f) pcos(0)

i = Z I n 0 0 u1]
3 -1 cos(f)  psin(f) | |uz
0 6 0 0
gl o] | o 1|

If we take = and z as the two outputs we can observe that each out-
put has relative degree 2 (1 =2, 1 = 2):

Z |0 i —sinf pcosf| |ug
s |—1 cosf  pusin@| |up

A(8)
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where A(0) is invertible when 1 # 0:

—sinf cosf
A7) = [1 1 1
ECOSH ﬁsme

Thus the systems has vector relative degree {2,2}. This implies that
when 4 # 0, and the input-output linearizing controller is

up| _|—sinf cosf
u| icos& %sin@ '

Note, the system will have zero dynamics since » < n. Since our

0
1

U1

+

vy

output coordinates are aligned with our state variables, we know that
the remaining two zero dynamic coordinates will be § and §. We can
solve for the zero dynamics by substituting u; = % sin § into our
dynamics for 6:

. 1
6 = —sin#.
I

The system is nonminimum phase for 1 > 0, since 6 = 0 is unstable.

Control Lyapunov Functions

Motivation: Feedback linearization stabilizes systems by “cancelling”
the nonlinear dynamics and forcing a system to act like a linear

one. While this is better than simply “ignoring” nonlinear dynam-
ics (through classic linearization), it still does not take advantage of
the natural dynamics of the system. This fundamental limitation is
addressed through the use of control Lyapunov functions.

Intro: We had previously utilized Lyapunov for analysis of the system

&= f(z),  f(0)=0 (1)

Here, the goal was to find a positive definite Lyapunov function V' (z)
such that V(z) is negative definite to prove asym. stability of z = 0.

What about controlling for (asymptotic) stability?

¢ An idea: For
&= f(x)+g(x)u ()

and a candidate positive definite Lyapunov function V' (z), choose
u such that V is negative definite
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Definition: Control Lyapunov Function. A positive definition function
V (z) is a (global) control Lyapunov function (CLF) for (2) if Vo # 0,
3 u such that

ov

V(e) = 5= (@) + g(x)u] <0. ()
Equivalently,
g—‘;g(x) =0 and z#0 = %f(x) <0. (4)

In today’s lecture we will introduce a closed-form expression for a
CLF, known as Sontag’s formula. In the next lecture, we will instead
solve for u through convex optimization.

If v € R, Sontag’s formula is:

[+ VU3 4 (30) )]/ (350) i o020
0 if 2Lg=0
(5)

u= () =

Note:

e Choosing v = ¢(x) asymptotically stabilizes the origin (Proof is
shown next).

e Formula seems complicate. Why? (Examples shown later)
Proof. Compute V (z) for z # 0:
o If %—‘;g(x) =0, then

V(z) = %f(m) <0

for any x # 0 by definition of CLF

o If %—‘;g(x) # 0, then

= W (1 (a) + g(w)oe)] = —J (ZZf)z + (‘229)4 <0

Therefore, = # 0 implies V(z) < 0, which shows asymptotic

V(z)

stability.



Example 1:
Consider
i=—a>+u

with CLF V (z) = 22. Let’s consider the following controllers:

1. u=0:
2. Feedback linearizing controller

3. u = ¢(z) from Sontag’s formula

Controller 1:

V(z) = Z—Zw =g(—2%) = —2* <0 for z#0 (6)

so the system is globally asymptotically stable but not exponentially
stable®.

Controller 2: With the goal of driving x — 0, we can choose our
output y = x. This implies that r = 1 (since we need to differentiate z
once to get to u). The feedback linearizing controller would be

u:xS—l-v

Therefore, choosing v = —kjx for some k; > 0 yields the closed loop
system:

=k = V=x(-kz)=—ka?

hence the system is now exponentially stable.

Controller 3: To apply Sontag’s formula, we need to compute the
terms:

?)—Z (z) = 1:(—1’3) = —g*, %Q(I) =z(l) ==

Plugging these into Sontag’s formula yields:
u=—1/x (—x4 + VaB +aj4)
=-1/z (7304 + xzm)
— 2% eVt 41
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4 Recall that exponential stability
requires a linear bound on V in terms
of V itself, i.e.:

V(z) < —cV(x)

for some ¢ > 0



controller

7 6 -5-4-3-2_1

This control law yields the closed-loop system:
V(z) ==z (—x3—|—a:3 —;m/a:4—|—l> =22Vt +1
< —a?

where the last inequality follows from the fact that va* +1 > 1.
Therefore, the system is also globally exponentially stable.

A comparison of the two controllers is shown below:

u 1
- - - Feedback linearization )
—— Sontag’s formula 4 /!
,
'I
,,2 '/
—_— — = > T
-3 -2 -1- 1 2 3
l' *2
4
4
’
’ r—4
1

In general, Sontag’s formula can keep useful nonlinearities (like —x?),
while feedback linearization cancels all nonlinearities. However, there
is no universal theorem that Sontag’s formula is always “better”.

Example 2:

Consider the system

iP=z—a3 +u
The feedback linearizing controller for this system is:
w=—x+2° — kix

for any k; > 0.
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A CLF (using Sontag’s formula) for this system is

o(—z+23) —z/22(x — 23)2 4 2*
x

u =

= —z+a°—/(1—-22)2+1

A comparison of the two controllers is shown below:

1
. . . u ’
- - - Feedback linearization '
!
——  Sontag’s formula 14 K
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