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March 13 2025

Overview:

• Frobenius Theorem continued

• Feedback linearization for MIMO Systems

Additional Reading:

• Khalil, Chapter 13.3

Full State Feedback Linearization

Recall that our condition for r = n is: Ladf gh(x) = L[f ,g]h(x) =
∂h
∂x (

∂g
∂xf (x)−

∂f
∂x g(x))

Lgh(x) = Ladf gh(x) = · · · = Ladn−2
f gh(x) = 0 in a nbhd of x0 (1)

Ladn−1
f gh(x0) ̸= 0. (2)

Note: (1) can be rewritten as:

Lgh(x) = L[f ,g]h(x) = · · · = L[f ,[f ,...,[f ,g]]]h(x) = 0

where the benefit is that the h(x) term can be moved outside:

∂h

∂x

[
g adf g ad2

f g . . . adn−2
f g

]
Theorem: Full-state Feedback Linearizable. The system ẋ = f(x) +

g(x)u is feedback linearizable around x0 if and only if the following two
conditions hold:

C1) [g(x0) adf g(x0) . . . adn−1
f g(x0)] has rank n

C2) ∆(x) = span{g(x), adf g(x), . . . , adn−2
f g(x)} is involutive in a

neighborhood of x0.

Proof. (if) Given C1 and C2 show that there exists h(x) satisfying
(1)-(2).

∆(x) is nonsingular by C1 and involutive by C2. Thus, by the Frobe-
nius Theorem 1, there exists h(x) satisfying (1) and dh(x) ̸= 0. 1 Recall that the Frobenius Theorem

states that a nonsingular distribution is
completely integrable if and only if it is
involutive. And recall that completely
integrable tells us that there must exist
n− k functions such that ∂ϕi

∂x fj = 0
and ∂ϕi

∂x are linearly independent

To prove (2) suppose, to the contrary, Ladn−1
f

h(x0) = 0. This implies

dh(x0)[g(x0) adf g(x0) . . . adn−1
f g(x0)]︸ ︷︷ ︸

nonsingular by C1

= 0.



me 6402 – lecture 19 2

Thus dh(x0) = 0, a contradiction.

(only if) Given that y = h(x) with r = n exists, that is (1)-(2) hold,
show that C1 and C2 are true.

We will use the following fact2 which holds when r = n: 2 see, e.g., Khalil, Lemma C.8

Ladi
f gL

j
fh(x) =

0 if i+ j ≤ n− 2

(−1)n−1−jLgL
n−1
f h(x) ̸= 0 if i+ j = n− 1.

(3)

Define the matrix

M =


dh

dLfh
...

dLn−1
f h


[
g − adf g ad2

f g . . . (−1)n−1 adn−1
f g

]

(4)
and note that the (k, ℓ) entry is:

Mkℓ = dLk−1
f h(x)(−1)ℓ−1 adℓ−1

f g(x)

= (−1)ℓ−1Ladℓ−1
f gL

k−1
f h(x).

Then, from (3):


0 0 · · · ⋆

0 ⧸
...

... ⋆
...

⋆ · · · · · · ⋆


Mkℓ =

0 ℓ+ k ≤ n

̸= 0 ℓ+ k = n+ 1.

Since the diagonal entries are nonzero, M has rank n and thus the
factor [

g − adf g ad2
f g . . . (−1)n−1 adn−1

f g
]

in (4) must have rank n as well. Thus C1 follows.

This also implies ∆(x) is nonsingular; thus, by the Frobenius Thm,

complete integrability ≡ involutivity.

∆(x) is completely integrable since h(x) satisfying (1) exists by as-
sumption; thus, we conclude involutivity (C2).

Example:

Consider the following system:

ẋ1 = x2 + 2x2
1

ẋ2 = x3 + u

ẋ3 = x1 − x3

Feedback linearizability was shown on page 1 by inspection: y = x3

gives relative degree = 3. Can we verify this choice of y with the
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theorem above? We will begin by computing the elements of the
span3: 3 Recall that [f , g] = ∂g

∂xf (x)−
∂f
∂x g(x)

[f , g] = 0−

4x1 1 0
0 0 1
1 0 −1

0
1
0

 =

−1
0
0


[f , [f , g]] = 0−

4x1 1 0
0 0 1
1 0 −1

−1
0
0

 =

4x1
0
1


f(x) =

 x2 + 2x2
1

x3

x1 − x3

 g(x) =

 0
1
0


[f , g](x) =

 −1
0
0

 [f , [f , g]](x) =

 4x1

0
1


Conditions of the theorem:

1.

 0 −1 4x1

1 0 0
0 0 1

 full rank

2. ∆ = span


 0

1
0

 ,

 −1
0
0


 involutive

∂h

∂x

 0 −1
1 0
0 0

 satisfied by h(x) = x3.

Feedback Linearization Continued

Recall “strict feedback systems" discussed in Lecture 14:

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1,x2) + g2(x1,x2)x3

ẋ3 = f3(x1,x2,x3) + g3(x1,x2,x3)x4

...

ẋn = fn(x) + gn(x)u.

(5)

Such systems are feedback linearizable when gi(x1, . . . ,xi) ̸= 0 near
the origin, i = 1, 2, · · · ,n, because the relative degree is n with the
choice of output y = h(x) = x1:

y(n) = Ln
fh(x) + g1(x1)g2(x1,x2) · · · gn(x)︸ ︷︷ ︸

LgL
n−1
f h(x) ̸= 0

u.

Feedback linearizability is lost when gi(0) = 0 for some i; however,
backstepping may be applicable as the following example illustrates:
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Example 1:

ẋ1 = x2
1x2

ẋ2 = u.

Treat x2 as virtual control and let α1(x1) = −x1 which stabilizes the
x1-subsystem, as verified with Lyapunov function V1(x1) =

1
2x

2
1.

Then z2 := x2 − α1(x1) satisfies ż2 = u− α̇1, and

u = α̇1 −
∂V1

∂x1
x2

1 − k2z2 = −x2
1x2 − x3

1 − k2(x2 + x1)

achieves global asymptotic stability:

V =
1
2
x2

1 +
1
2
z2

2 ⇒ V̇ = −x1
4 − k2z

2
2 .

In contrast the system is not feedback linearizable, because condition
(C1) in the theorem for feedback linearizability (Lecture 18, p.4) fails.
To see this note that

f(x) =

[
x2

1x2

0

]
, g(x) =

[
0
1

]
, adf g(x) = [f , g](x) =

[
−x2

1
0

]
,

thus, with n = 2 and x0 = 0,

[g(x0) adf g(x0) . . . adn−1
f g(x0)] =

[
0 0
1 0

]
,

which is rank deficient.

Multi-Input Multi-Output Systems

Consider now a MIMO system with m inputs and m outputs:

ẋ = f(x) +
m

∑
i=1

gi(x)ui = f(x) +
[
g1(x) . . . gm(x)

] 
u1
...

um

 (6)

yi = hi(x), i = 1, · · · ,m.

Let ri denote the number of times we need to differentiate yi to hit at
least one input. Then,
y
(r1)
1
...

y
(rm)
m

=


L
r1
f h1(x)

...
Lrm
f hm(x)


︸ ︷︷ ︸

=: B(x)

+


Lg1L

r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

...
...

Lg1L
rm−1
f hm(x) · · · LgmLrm−1

f hm(x)


︸ ︷︷ ︸

=: A(x)


u1
...

um

 .
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If A(x) is nonsingular, then the feedback law

u = A(x)−1(−B(x) + v)

input/output linearizes the system, creating m decoupled chains of
integrators:

y
(ri)
i = vi, i = 1, . . . ,m.

We say that the system has vector relative degree {r1, · · · , rm} if the
matrix A(x) defined above is nonsingular.

Example 2: The kinematic model of a unicycle, depicted below, isẋ1

ẋ2

ẋ3

 =

cosx3

sinx3

0

 u1 +

0
0
1

 u2,

where u1 is the speed and u2 is the angular velocity.

(x1,x2)

θ = x3

u1

Let y1 = x1 and y2 = x2, and note that[
ẏ1

ẏ2

]
=

[
cosx3 0
sinx3 0

]
︸ ︷︷ ︸
=: A(x)

[
u1

u2

]
.

Since A(x) is singular, the system does not have a well-defined vector
relative degree. □

Normal form for MIMO systems

The notion of zero dynamics and the normal form can be extended to
MIMO systems4. If the system has vector relative degree {r1, · · · , rm}, 4 see, e.g., Sastry, Section 9.3

then r := r1 + · · ·+ rm ≤ n and

η := [h1(x) Lfh1(x) · · ·Lr1−1
f h1(x) · · · hm(x) Lfhm(x) · · ·Lrm−1

f hm(x)]T

defines a partial set of coordinates. As in normal form discussed in
Lecture 17, one can find n− r additional functions z1(x), · · · , zn−r(x)

so that x 7→ (z, η) is a complete coordinate transformation.

Full-state feedback linearization amounts to finding m output func-
tions h1, · · · ,hm such that the system has vector relative degree
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{r1, · · · , rm} with r1 + · · · + rm = n. Necessary and sufficient
conditions for the existence of such functions, analogous to those
in Lecture 18 for SISO systems, are available5. 5 see, e.g., Sastry, Proposition 9.16

Example 3: Consider the following model of a planar vertical take-off
and landing (PVTOL) aircraft6 6 Sastry, Section 10.4.2

ẍ = − sin(θ)u1 + µ cos(θ)u2

z̈ = cos(θ)u1 + µ sin(θ)u2 − 1

θ̈ = u2,

where µ is a constant that accounts for the coupling between the
rolling moment and translational acceleration, and −1 in the second
equation is the gravitational acceleration, normalized to unity by
appropriately scaling the variables.

x

θ

u1

z

If we take x and z as the two outputs we get[
ẍ

z̈

]
=

[
0
−1

]
+

[
− sin θ µ cos θ
cos θ µ sin θ

]
︸ ︷︷ ︸

A(θ)

[
u1

u2

]

where A(θ) is invertible when µ ̸= 0:

A−1(θ) =

[
− sin θ cos θ
1
µ cos θ 1

µ sin θ

]
.

Thus the systems has vector relative degree {2, 2} This implies that
when µ ̸= 0, and the input/output linearizing controller is[

u1

u2

]
=

[
− sin θ cos θ
1
µ cos θ 1

µ sin θ

]([
0
1

]
+

[
v1

v2

])
.

The zero dynamics is obtained by substituting u∗2 = 1
µ sin θ, needed

to maintain z at a constant value and ż at zero, in the dynamical
equation for θ:

θ̈ =
1
µ

sin θ.

The system is nonminimum phase for µ > 0, since θ = 0 is unstable.
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