ME 6402 — Lecture 19

FEEDBACK LINEARIZATION 4 (FEEDBACK LINEARIZA-
TION FOR MIMO SYSTEMS)

March 13 2025

Overview:

¢ Frobenius Theorem continued

¢ Feedback linearization for MIMO Systems
Additional Reading;:

¢ Khalil, Chapter 13.3

Full State Feedback Linearization

Recall that our condition for r = n is:
Lgh(z) = Lag, gh(z) = - = Lad}kzgh(x) =0inanbhdof zg (1)

Lgn1gh(wo) # 0. (2)
Note: (1) can be rewritten as:

Loh(x) = Liggh(x) =+ = Lig g, [fg x) =0
where the benefit is that the i(z) term can be moved outside:

oh

3 [g adsg adicg ad?_zg}

The system & = f(xz) +
g(x)u is feedback linearizable around x if and only if the following two
conditions hold:

C1) [g(xz0) adjfg(zo) ... ad?_lg(a:o)] has rank n

C2) A(z) = span{g(z),adfg(z),.. .,ad?_zg(x)} is involutive in a
neighborhood of x.

Proof. (if) Given C1 and C2 show that there exists h(z) satisfying
(1)-(2).

A(z) is nonsingular by C1 and involutive by C2. Thus, by the Frobe-
nius Theorem *, there exists h(z) satisfying (1) and dh(z) # 0.

To prove (2) suppose, to the contrary, L_ d?—lh(l‘o) = 0. This implies

dh(xo)[g(zo) adj g(wo)

nonsingular by C1

: ad?_lg(xo)] =0.

* Recall that the Frobenius Theorem

states that a nonsingular distribution is

completely integrable if and only if it is

involutive. And recall that completely

integrable tells us that there must exist

n — k functions such that %d;" fi =0
%ﬁi are linearly independent

and
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Thus dh(zg) = 0, a contradiction.

(only if) Given that y = h(z) with r = n exists, that is (1)-(2) hold,
show that C1 and C2 are true.

We will use the following fact*> which holds when r = n: ?see, e.g., Khalil, Lemma C.8

0 ifi+j<n—2

L . LLh(z) = .
ady g™ f () {(_1)n—1—JLgL’j}‘1h(x)7éO ifi+j=n—-1. G)

Define the matrix

dh
dL¢h

M= [g —adyg adgcg (—1)”’1ad?7lg

n—1
dLy"'h
4)

and note that the (%, ¢) entry is:
My = dLk h(2)(=1)" " ad " g(a)

::(—J)é’lLadﬁquﬁ’lh(x)

Then, from (3): 0o 0 - &
0 [(+k<n 0 /oo
My = ,
#0 (+k=n+1 A

Since the diagonal entries are nonzero, M has rank n and thus the Koo
factor
[ g —adyyg adicg oo (=1t ad;ﬁflg

in (4) must have rank n as well. Thus C1 follows.

This also implies A(x) is nonsingular; thus, by the Frobenius Thm,
complete integrability = involutivity.

A(z) is completely integrable since h(z) satisfying (1) exists by as-

sumption; thus, we conclude involutivity (C2). O

Example:

Consider the following system:

1 = xp+ Zx%
Ty = x3-+u
r3 = x1—x3

Feedback linearizability was shown on page 1 by inspection: y = x3
gives relative degree = 3. Can we verify this choice of y with the
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theorem above? We will begin by computing the elements of the

span3:
Ty + 2:5%
fla) = 3
T — T3
-1
[fo9l(x)=| 0 [£.1f,9]1(z)
0
Conditions of the theorem:
0 -1 4xg
. |1 0 0 full rank
0o 0 1
-1
2. A = span 11, 0 involutive
0
-1
oh o
Fr 1 g satisfied by h(z) = 3.

Feedback Linearization Continued

Recall “strict feedback systems" discussed in Lecture 14:

&1 = fi(z1) + g1(21) 72

iy = fo@q,22) + g2(x1, 22) 23

i3 = f3(x1, 22, 23) + g3(21, T2, T3) 74

Tp = fn(x) +gn($)u-

(5)

Such systems are feedback linearizable when g;(x1,...,2;) # 0 near

the origin, ¢ = 1,2, - -, n, because the relative degree is n with the

choice of output y = h(x) = x1:

y" = Lhh(z) + g1(21) g2 (21, 72) - - - gn () 1.

LgLy " h(z) #0

Feedback linearizability is lost when ¢;(0) = 0 for some ¢; however,
backstepping may be applicable as the following example illustrates:

ME 6402 — LECTURE 19 3

3 Recall that [f, g] = 99 f(z) — 9L g()

-

4171

[frg]:()_ |: 0
1

1
0
0

4381
0
1

0
1
-1

1
0
0

0
1
-1

|

-1
0
0

|



Example 1:
T = x%xz
Ty = U.
Treat z; as virtual control and let oy (1) = —x1 which stabilizes the

1-subsystem, as verified with Lyapunov function V4 (z1) = 22.
Then z; := xp — aq(z7) satisfies 2, = u — ¢1, and

N 8‘/1 2 2 3
U= — a—xlxl — kpzp = —ajx0 — 2] — k(w2 + 1)

achieves global asymptotic stability:

1 1 .
V = Ex%JrEz% = V = *.1314*]{22%.

In contrast the system is not feedback linearizable, because condition
(C1) in the theorem for feedback linearizability (Lecture 18, p.4) fails.
To see this note that

2

xr3xT 7x2
J() = [ 102], 9(x) = m ady g(x) = [f,0](x) = [ 01],

thus, with n =2 and zg =0,

a(e0) adsg(an) .. ad}g(e0)] = [‘j 8]

which is rank deficient.

Multi-Input Multi-Output Systems

Consider now a MIMO system with m inputs and m outputs:

U
& = f(x)-f-;gi(x)ui: f(a:)+[gl(x) gm(x)} - | ()
yi = hi(z), i=1---,m.

Let r; denote the number of times we need to differentiate y; to hit at
least one input. Then,

yiTl) L?h] (l‘) LglL?_lhl(a?) e LgmL;l_lhl (x) Uy
N : + : : :
yq(,gm) L;m hm (1') Lg] L;cm_lhm (ZII) e LgmL;m_lhm (LU) Um

=: B(z) =: A(z)
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If A(z) is nonsingular, then the feedback law
u= A(z)"(~B(z) +v)

input/output linearizes the system, creating m decoupled chains of
integrators:

(i) i = 1,.

Y, =g, .., M.

We say that the system has vector relative degree {r1,- - -, } if the
matrix A(z) defined above is nonsingular.

Example 2: The kinematic model of a unicycle, depicted below, is

i1 COS X3 0
Ir| = |sinxs | uy + [0 ug,
T3 0 1

where v, is the speed and u; is the angular velocity.

U1

L3

Let y; = x1 and 3, = xp, and note that
g1| _ |cosxz Of |ug
() ~|sin z3 0| |uy|’
| —

Since A(z) is singular, the system does not have a well-defined vector
relative degree. g

Normal form for MIMO systems

The notion of zero dynamics and the normal form can be extended to
MIMO systems#. If the system has vector relative degree {ry, -+ ,mm}, 4see, e.g., Sastry, Section 9.3
thenr:=r14+---4+ry, <nand

ni=[h(z) Leh(a)- - P ha(@) - h(x) L (@) - L o ()]

defines a partial set of coordinates. As in normal form discussed in
Lecture 17, one can find n — r additional functions z1(z), - - - , zn—r ()
so that z — (z,7) is a complete coordinate transformation.

Full-state feedback linearization amounts to finding m output func-
tions Ry, - - -, hyy such that the system has vector relative degree



{ri,--+,rm} withr; + --- + rp, = n. Necessary and sufficient
conditions for the existence of such functions, analogous to those
in Lecture 18 for SISO systems, are available>.

Example 3: Consider the following model of a planar vertical take-off
and landing (PVTOL) aircraft®
& = —sin(f)ug + pcos(0)uy
= cos(f)uj + psin(f)uy — 1
0 =
where p is a constant that accounts for the coupling between the
rolling moment and translational acceleration, and —1 in the second

equation is the gravitational acceleration, normalized to unity by
appropriately scaling the variables.

U1

Y
8

If we take = and z as the two outputs we get

Z |0 n —sinf pcosf| |uq
2l |-1 cosf  psinf| |up

A(9)

where A(6) is invertible when 1 # 0:

_ —sinf cosf
A 1(9) = [1 1 ]

= = sin
cos 6 S 0

Thus the systems has vector relative degree {2,2} This implies that
when 4 # 0, and the input/output linearizing controller is

up| _|—sinf cosf
up| %cos& %sin@ '

The zero dynamics is obtained by substituting u; = % sin §, needed

0
1

U1

+

v2

to maintain z at a constant value and 2 at zero, in the dynamical
equation for 6:

f = 1sinG.
I

The system is nonminimum phase for ;. > 0, since 6 = 0 is unstable.
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5 see, e.g., Sastry, Proposition 9.16

® Sastry, Section 10.4.2
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