ME 6402 — Lecture 18

FEEDBACK LINEARIZATION 3 (FULL-STATE FEEDBACK
LINEARIZATION)

March 11 2025

Overview:

e Introduce full-state feedback linearization

¢ Define a few basic concepts from differential geometry
¢ Frobenius Theorem

Additional Reading;:

e Khalil, Chapter 13

® Sastry, Chapter 9

Review of Normal Form

To find the zero dynamics coordinates z, we must find n — r inde-
pendent variables z such that Z does not contain u. An alternative
approach is to find coordinates z; (with i = 1,...,n — r) such that:

aZ’L _ 821' Ozi —
ole) = |G B g@) =0

This can be interpreted as the coordinates z being chosen to be normal
to the actuation vector g(x).

Example

Consider the system

We can inspect the relative degree of the system by observing:
y=1I2

Y= = w3

§J=d3=max3+u
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Thus, the system has relative degree r = 2. Since r < n (and our
system is SISO), we will have one degree of underactuation. To char-
acterize the zero dynamics, we restrict z to:

Z={zeR®st ap =13 =0}

and take v = 0 for the input-output linearizing control law:

1
() = ——_ (—IL2h
@) = @) (~Z5h(@)+ )
= —x123+ v
= U= —T1T3
This yields the zero dynamics:
2+a3
i = —xq + - = _
1 Tt 2 (—2123) 1

Iy = x3 =0
N
0

i3 = x123 — 2123 =0

Thus, the zero dynamics are &1 = —.

Finally, to find the zero dynamics coordinate z for normal form, we
need to find a function z(z) such that

A0) =0, Zga) =0

2
Since g(z) = [fjig,o,uT;
0z _ 0z 2+a3§ 0z
%g(l‘)—o — (37.%'1'1+:C§+87125_0

This partial differential equation can be solved by separating vari-
ables to obtain
2(x) = —x1 4+ 23 + tan ! (x3)

Thus, the normal form is:

z z —x1 + 23 + tan!(23)
T(x)= |G| =|m| = )
o m 3

NOTE: From here on out I will be denoting the output coordinates as
7n instead of ( since it is difficult for me to write (...
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Full-State Feedback Linearization

The system & = f(z) + g(z)u, z € R", u € R, is (full state) feedback
linearizable if a function A : R" — R exists such that the relative
degree from u to y = h(x) is n.

Since r = n, the normal form in Lecture 19 has no zero dynamics and

m h(z)

m Lh(x)
z— ] = .

In L?ilh(‘r)

is a diffeomorphism that transforms the system to the form:

o= m
= 3
i = Lh(z) + LeL} h(z)u.
Then, the feedback linearizing controller
! < Lh(z) + ) K k
U= ——""—=—""7| — X V), UV=—R1N " — Rnln,
LyL’y h(x) !

yields the closed-loop system:

0 1
0 1
7= An where A=
1
—k1 —ky —k3 ... —kn
Example
Consider the system
T1 = X2+ Zx%
Ty = x3+4+u
T3 = x1—T3

The choice y = z3 gives relative degree r = n = 3. Thus, we know
that the normal form will be of the form:

m h(x) 3
T(z) = |m| = |Lyh(z)| = T — 13
3 L3h(z) y + 207 — (21 — 3)



This gives us our strict feedback form:

T m
n=|m|l= 73
s (421 — 1) (22 +223) + 71 + u

with the feedback linearizing controller:

u=—(4axy — 1) (22 +223) — 21 — kym — kamp — kana.

Summary so far:

I/0 Linearization: ¢ suitable for tracking
¢ output y is an intrinsic physical variable
Full state linearization: e set point stabilization
* output is not intrinsic, selected to enable
a linearizing change of variables.

Remaining question:

* When is a system feedback linearizable, i.e., how do we know
whether a relative degree r = n output exists?

Basic Definitions from Differential Geometry

Definition: The Lie bracket of two vector fields f and g is a new vec-
tor field defined as:

.9l = 22 1(2) — 2L o).
Note:
1. [f/g] = _[g/f]/
2. [f.f1=0,

3. If f, g are constant then [f, g] = 0.

Notation for repeated applications:
(. [f.9l =ad}g, [f,1f,1f,d]]] = ad}g,
ad?cg(:z:) 2 g(z), adlfcg = [f,adl;f1 g k=123,...

Definition: Given vector fields fy, ..., fi, a distribution A is defined as
A(x) = span{ fi(z),..., fr(z)}.

f € A means that there exist scalar functions «;(z) such that

f(@) = aq(z) fr(z) + -+ + ag(2) fr ().
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Definition: A is said to be n
independent for all x.

onsingular if fi(x),..., fx(x) are linearly

Definition: A is said to be involutive if

HENpEN = [g1,p] €A

that is, A is closed under the Lie bracket operation.

Proposition: A = span{ fj, ..

[fir [

Example 1: A = span{fj,..

vectors

., [} is involutive if and only if
JeA 1<ij<k

., fx} where f1,..., f;, are constant

Example 2: a single vector field f(z) is involutive since [f, f] =0 €

A

Definition: A nonsingular k-dimensional distribution

A@) = span{fi(a), .., fy(2)} =€ R"

is said to be completely inte

o3}
such that
i o\ _
%f] (95) =0
and d®;(z) := 3@@‘, i=1,..
T

Frobenius Theorem: A nonsingular distribution is completely inte-

grable if and only if it is inv

grable if there exist n — k functions

(@), bni(x)

i=1,...,n—k j=1,...k

.,n — k, are linearly independent.

olutive.

Back to (Full State) Feedback Linearization

Recall: & = f(z) + g(z)u, z € R", u € R is feedback linearizable if
we can find an output y = h(x) such that relative degree r = n.

How do we determine if a relative degree r = n output exists?

Lgh(z) = Lgth(x) =..

LgL'y " h(wo) # 0.

- = LgL'}"*h(z) = 0 in a nbhd of zg

Proposition:" (1)-(2) are equivalent to:

Lyh(x) = Loa, ghlz) = -

Lad}klgh(wo) 75 0.

= Lad?fzgh(x) = 0 in a nbhd of g

(1)
)

(3)
4)
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! follows from (5) below with j =0



The advantage of (3) over (1) is that it has the form:

Plga) adsole) .. ad} 2g(@)] =0

which is amenable to the Frobenius Theorem.

Theorem: & = f(z) + g(x)u is feedback linearizable around z if and
only if the following two conditions hold:

C1) [g(zo) adfg(w) ... ad} 'g(zo)] has rank n

C2) A(x) = span{g(z),adsg(z),.. .,ad}hzg(x)} is involutive in a
neighborhood of xy.

Proof: (if) Given C1 and C2 show that there exists h(x) satisfying
(3)-(4)-

A(z) is nonsingular by C1 and involutive by C2. Thus, by the Frobe-
nius Theorem, there exists h(z) satisfying (3) and dh(z) # 0.

To prove (4) suppose, to the contrary, L_ d?,lh(xo) = 0. This implies

dh(z0)[g(x0) adfg(wo) ... ad} 'g(wo)] =0.

nonsingular by C1

Thus dh(zg) = 0, a contradiction.

(only if) Given that y = h(z) with r = n exists, that is (3)-(4) hold,
show that C1 and C2 are true.

We will use the following fact> which holds when r = n:

j 0 ifi+j<n-2
Ladi gth(m) = 11— n—1 e (5)
! (D) T ILgLY h(x) £0 ifitj=n—1.

Define the matrix

dh
dL ¢h
M = ; [g —adsyg adffg (—1)”’1ad?7lg

.,1
dLy'h
(6)

and note that the (%, ¢) entry is:

My = dZk " h(a) (~1)' " ad ™ g(a)

f

::(_quflLad?quﬁflh(x)

Then, from (5):
)0 {+Ek<n

My =
£0 (+k=n+1.
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In practice, we use the Frobenius
Theorem to show that the dis-
tribution A(z) is involutive by
finding a function ¢(z) such that

221g(x),ads g(),...,ad} 2g(z)] = 0.

*see, e.g., Khalil, Lemma C.8
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Since the diagonal entries are nonzero, M has rank n and thus the

factor
{g —adysyg adgcg (71)”_1ad7}_1g

in (6) must have rank n as well. Thus C1 follows.

This also implies A(z) is nonsingular; thus, by the Frobenius Thm,
complete integrability = involutivity.

A(z) is completely integrable since h(z) satisfying (3) exists by as-

sumption; thus, we conclude involutivity (C2). O
Example: i1 = xp+2423

Ty = x34+u

T3 = x1—23

Feedback linearizability was shown on page 1 by inspection: y = x3

gives relative degree = 3. Verify with the theorem above: Recall that [f,g] = 92 f(z) — 9L g(x)
5 B 4x1 0 0
Ty + 217 0 [f, 9] =0— 1 1 O
flx) = 3 glz)=| 1 -1 [o 0
1 — X3 1 4901
1 (£, (£, 9] =0~ 0 0
-1 411 0 0
[f,9](z) =] 0 [ 9ll(@) = | 0
0 1

Conditions of the theorem:

0 -1 4.131

1. |1 0 0 | fulrank
0 0 1

0 -1

2. A = span 11,1 0 involutive

0

1
Oh 0

9 1 0 satisfied by h(z) = 3.
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