
ME 6402 – Lecture 18
feedback linearization 3 (full-state feedback

linearization)

March 11 2025

Overview:

• Introduce full-state feedback linearization

• Define a few basic concepts from differential geometry

• Frobenius Theorem

Additional Reading:

• Khalil, Chapter 13

• Sastry, Chapter 9

Review of Normal Form

To find the zero dynamics coordinates z, we must find n− r inde-
pendent variables z such that ż does not contain u. An alternative
approach is to find coordinates zi (with i = 1, . . . ,n− r) such that:

∂zi
∂x

g(x) =
[
∂zi
∂x1

. . . ∂zixn

]
g(x) ≡ 0

This can be interpreted as the coordinates z being chosen to be normal
to the actuation vector g(x).

Example

Consider the system

ẋ1 = −x1 +
2 + x2

3
1 + x2

3
u

ẋ2 = x3

ẋ3 = x1x3 + u

y = x2

We can inspect the relative degree of the system by observing:

y = x2

ẏ = ẋ2 = x3

ÿ = ẋ3 = x1x3 + u
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Thus, the system has relative degree r = 2. Since r < n (and our
system is SISO), we will have one degree of underactuation. To char-
acterize the zero dynamics, we restrict x to:

Z = {x ∈ R3 s.t. x2 = x3 = 0}

and take v = 0 for the input-output linearizing control law:

u∗(x) =
1

LgLfh(x)

(
−L2

fh(x) + v
)

= −x1x3 + v

=⇒ u = −x1x3

This yields the zero dynamics:

ẋ1 = −x1 +
2 + x2

3
1 + x2

3
(−x1x3)︸ ︷︷ ︸

0

= −x1

ẋ2 = x3︸︷︷︸
0

= 0

ẋ3 = x1x3 − x1x3 = 0

Thus, the zero dynamics are ẋ1 = −x1.

Finally, to find the zero dynamics coordinate z for normal form, we
need to find a function z(x) such that

z(0) = 0,
∂z

∂x
g(x) = 0

Since g(x) = [
2+x2

3
1+x2

3
, 0, 1]T :

∂zi
∂x

g(x) = 0 =⇒ ∂z

∂x1
·

2 + x2
3

1 + x2
3
+

∂z

∂x3
= 0

This partial differential equation can be solved by separating vari-
ables to obtain

z(x) = −x1 + x3 + tan−1(x3)

Thus, the normal form is:

T (x) =

 z

ζ1

ζ2

 =

 z

η1

η2

 =

−x1 + x3 + tan−1(x3)

x2

x3


NOTE: From here on out I will be denoting the output coordinates as
η instead of ζ since it is difficult for me to write ζ...
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Full-State Feedback Linearization

The system ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R, is (full state) feedback
linearizable if a function h : Rn 7→ R exists such that the relative
degree from u to y = h(x) is n.

Since r = n, the normal form in Lecture 19 has no zero dynamics and

x →


η1

η2
...
ηn

 =


h(x)

Lfh(x)
...

Ln−1
f h(x)


is a diffeomorphism that transforms the system to the form:

η̇1 = η2

η̇2 = η3
...

η̇n = Ln
fh(x) + LgL

n−1
f h(x)u.

Then, the feedback linearizing controller

u =
1

LgL
n−1
f h(x)

(
− Ln

fh(x) + v

)
, v = −k1η1 · · · − knηn,

yields the closed-loop system:

η̇ = Aη where A =


0 1 0 . . .

0 0 1 . . .
. . .

1
−k1 −k2 −k3 . . . −kn

 .

Example

Consider the system

ẋ1 = x2 + 2x2
1

ẋ2 = x3 + u

ẋ3 = x1 − x3

The choice y = x3 gives relative degree r = n = 3. Thus, we know
that the normal form will be of the form:

T (x) =

η1

η2

η3

 =

 h(x)

Lfh(x)

L2
fh(x)

 =

 x3

x1 − x3

x2 + 2x2
1 − (x1 − x3)


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This gives us our strict feedback form:

η̇ =

η̇1

η̇2

η̇3

 =

 η2

η3

(4x1 − 1)(x2 + 2x2
1) + x1 + u


with the feedback linearizing controller:

u = −(4x1 − 1)(x2 + 2x2
1)− x1 − k1η1 − k2η2 − k3η3.

Summary so far:

I/O Linearization: • suitable for tracking
• output y is an intrinsic physical variable

Full state linearization: • set point stabilization
• output is not intrinsic, selected to enable

a linearizing change of variables.

Remaining question:

• When is a system feedback linearizable, i.e., how do we know
whether a relative degree r = n output exists?

Basic Definitions from Differential Geometry

Definition: The Lie bracket of two vector fields f and g is a new vec-
tor field defined as:

[f , g](x) =
∂g

∂x
f(x)− ∂f

∂x
g(x).

Note:

1. [f , g] = −[g, f ],

2. [f , f ] = 0,

3. If f , g are constant then [f , g] = 0.

Notation for repeated applications:

[f , [f , g]] = ad2
f g, [f , [f , [f , g]]] = ad3

f g, · · ·

ad0
f g(x) ≜ g(x), adk

f g ≜ [f , adk−1
f g] k = 1, 2, 3, . . .

Definition: Given vector fields f1, . . . , fk, a distribution ∆ is defined as
∆(x) = span{f1(x), . . . , fk(x)}.

f ∈ ∆ means that there exist scalar functions αi(x) such that

f(x) = α1(x)f1(x) + · · ·+ αk(x)fk(x).
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Definition: ∆ is said to be nonsingular if f1(x), . . . , fk(x) are linearly
independent for all x.

Definition: ∆ is said to be involutive if

g1 ∈ ∆, g2 ∈ ∆ =⇒ [g1, g2] ∈ ∆

that is, ∆ is closed under the Lie bracket operation.

Proposition: ∆ = span{f1, . . . , fk} is involutive if and only if

[fi, fj ] ∈ ∆ 1 ≤ i, j ≤ k.

Example 1: ∆ = span{f1, . . . , fk} where f1, . . . , fk are constant
vectors

Example 2: a single vector field f(x) is involutive since [f , f ] = 0 ∈
∆

Definition: A nonsingular k-dimensional distribution

∆(x) = span{f1(x), . . . , fk(x)} x ∈ Rn

is said to be completely integrable if there exist n− k functions

ϕ1(x), . . . ,ϕn−k(x)

such that
∂ϕi
∂x

fj(x) = 0 i = 1, . . . ,n− k, j = 1, . . . , k

and dΦi(x) :=
∂ϕi
∂x

, i = 1, . . . ,n− k, are linearly independent.

Frobenius Theorem: A nonsingular distribution is completely inte-
grable if and only if it is involutive.

Back to (Full State) Feedback Linearization

Recall: ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R is feedback linearizable if
we can find an output y = h(x) such that relative degree r = n.

How do we determine if a relative degree r = n output exists?

Lgh(x) = LgLfh(x) = · · · = LgL
n−2
f h(x) = 0 in a nbhd of x0 (1)

LgL
n−1
f h(x0) ̸= 0. (2)

Proposition:1 (1)-(2) are equivalent to: 1 follows from (5) below with j = 0

Lgh(x) = Ladf gh(x) = · · · = Ladn−2
f gh(x) = 0 in a nbhd of x0 (3)

Ladn−1
f gh(x0) ̸= 0. (4)
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The advantage of (3) over (1) is that it has the form:

∂h

∂x
[g(x) adf g(x) . . . adn−2

f g(x)] = 0

which is amenable to the Frobenius Theorem.

Theorem: ẋ = f(x) + g(x)u is feedback linearizable around x0 if and
only if the following two conditions hold:

C1) [g(x0) adf g(x0) . . . adn−1
f g(x0)] has rank n

C2) ∆(x) = span{g(x), adf g(x), . . . , adn−2
f g(x)} is involutive in a

neighborhood of x0. In practice, we use the Frobenius
Theorem to show that the dis-
tribution ∆(x) is involutive by
finding a function ϕ(x) such that
∂ϕ
∂x [g(x), adf g(x), . . . , adn−2

f g(x)] ≡ 0.

Proof: (if) Given C1 and C2 show that there exists h(x) satisfying
(3)-(4).

∆(x) is nonsingular by C1 and involutive by C2. Thus, by the Frobe-
nius Theorem, there exists h(x) satisfying (3) and dh(x) ̸= 0.

To prove (4) suppose, to the contrary, Ladn−1
f

h(x0) = 0. This implies

dh(x0)[g(x0) adf g(x0) . . . adn−1
f g(x0)]︸ ︷︷ ︸

nonsingular by C1

= 0.

Thus dh(x0) = 0, a contradiction.

(only if) Given that y = h(x) with r = n exists, that is (3)-(4) hold,
show that C1 and C2 are true.

We will use the following fact2 which holds when r = n: 2 see, e.g., Khalil, Lemma C.8

Ladi
f gL

j
fh(x) =

0 if i+ j ≤ n− 2

(−1)n−1−jLgL
n−1
f h(x) ̸= 0 if i+ j = n− 1.

(5)

Define the matrix

M =


dh

dLfh
...

dLn−1
f h


[
g − adf g ad2

f g . . . (−1)n−1 adn−1
f g

]

(6)
and note that the (k, ℓ) entry is:

Mkℓ = dLk−1
f h(x)(−1)ℓ−1 adℓ−1

f g(x)

= (−1)ℓ−1Ladℓ−1
f gL

k−1
f h(x).

Then, from (5):


0 0 · · · ⋆

0 ⧸
...

... ⋆
...

⋆ · · · · · · ⋆


Mkℓ =

0 ℓ+ k ≤ n

̸= 0 ℓ+ k = n+ 1.
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Since the diagonal entries are nonzero, M has rank n and thus the
factor [

g − adf g ad2
f g . . . (−1)n−1 adn−1

f g
]

in (6) must have rank n as well. Thus C1 follows.

This also implies ∆(x) is nonsingular; thus, by the Frobenius Thm,

complete integrability ≡ involutivity.

∆(x) is completely integrable since h(x) satisfying (3) exists by as-
sumption; thus, we conclude involutivity (C2).

Example: ẋ1 = x2 + 2x2
1

ẋ2 = x3 + u

ẋ3 = x1 − x3

Feedback linearizability was shown on page 1 by inspection: y = x3

gives relative degree = 3. Verify with the theorem above: Recall that [f , g] = ∂g
∂xf (x)−

∂f
∂x g(x)

[f , g] = 0−

4x1 1 0
0 0 1
1 0 −1

0
1
0

 =

−1
0
0


[f , [f , g]] = 0−

4x1 1 0
0 0 1
1 0 −1

−1
0
0

 =

4x1
0
1


f(x) =

 x2 + 2x2
1

x3

x1 − x3

 g(x) =

 0
1
0


[f , g](x) =

 −1
0
0

 [f , [f , g]](x) =

 4x1

0
1


Conditions of the theorem:

1.

 0 −1 4x1

1 0 0
0 0 1

 full rank

2. ∆ = span


 0

1
0

 ,

 −1
0
0


 involutive

∂h

∂x

 0 −1
1 0
0 0

 satisfied by h(x) = x3.
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