ME 6402 — Lecture 17
FEEDBACK LINEARIZATION 2

March 6 2025

Overview:

¢ Normal form for input-output feedback linearizable systems
Additional Reading;:

e Khalil 13.2

Feedback Linearization (continued)

Nonlinear Changes of Variables

T : R* — R" is called a diffeomorphism if its inverse T-1 exists, and
both 7 and 7! are continuously differentiable (C).

Examples:

1. £ = Tz is a diffeomorphism if T is a nonsingular matrix

2. { =sinz is a local diffeomorphism around = = 0, but not global

te
/ )
A

3. ¢ = 2% is not a diffeomorphism because 77!(-) is not C! at ¢ = 0

> X
/ ‘ slope =0

How to check if £ = T'(z) is a local diffeomorphism?

Implicit Function Theorem®

Suppose f : R x R® — R™ is C! and there exists 29 € R", § € R"
such that

f(zo,&) = 0.

* The key idea is that if a function has a
regular Jacobian, then it locally behaves
like a bijection with a smooth inverse
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If %(mo, &o) is nonsingular, then in a neighborhood of (g, &),

f@,€) =0
has a unique solution = = g(¢) where g is C! at & = &.
Corollary: Let f(z,&) = T'(z) — & If g—g is nonsingular at z(, then

T(-) is a local diffeomorphism around .

A "Normal Form” that Explicitly Displays the Zero Dynamics

Theorem: If & = f(x) + g(z)u, y = h(x) has a well-defined relative
degree r < n, then there exist a diffeomorphism 7" : = — Z ],

z € R"7", ¢ € R", that transforms the system to the form:

zZ= fO (Z/ C)
=0
(1)
Gr=0b(z0) +alz Qv y=0.
In particular, z = fy(z,0) represents the zero dynamics. g
To obtain this form, let ¢ = [h(x) Lgh(z) ... L;ﬁlh(:v)}T, and
find n — r independent variables z such that Z does not contain u.
Note that the terms b(z, () and a(z, () correspond to L;}(x) and
LgL}_lh(z) in the original coordinates.
In summary, this change of coordinates is defined by the map:
- . - [ 0z 02 ]
21 () 21 () 9z, 0 Oxg
Ozp—r Ozp—r
Zn—’/‘(~'v) Zn—'l‘(x) E o %zi
dLh dLh
Q (l‘) th(l‘) Oxq T Ozn,
Cr(x) L h(x) oLy 'h oLy h
- - - - L Oz Oxrn |
)

* This map is a diffeomorphism if its Jacobian (DT) has full rank.

¢ Given a SISO system with a well-defined relative degree . Then
there exist coordinates z;, ¢ = 1,...,n — r such that the map
T :R"™ — R" is a diffeomorphism.
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Example:

T, = X2

Ty = ar3t+u

3 = frz—u
y = I.

Let (1 = 21, (o = z, and note that z = x, + 3 is independent of
(1, (, and 2 does not contain u. Thus, the normal form is:

z=(a+pB)rs=(a+8)z— (a+ )
G=20

G =oar3+u=az—al +u.

I/0O Linearizing Controller in the new coordinates (1):

1
U:m<—b(2,C)+U> (3)
v=—kCG - — kG (4)

where kq, - - -, k, are such that all roots of s” + k,s" 1+ - - + kos + k;
have negative real parts.

Theorem: If z = 0 is locally exponentially stable for the zero dynam-
ics 2 = fy(2,0), then (3)—(4) locally exponentially stabilizes = = 0.

Proof: Closed-loop system:

z= fo(z,Q)
¢ =A¢
where
0 1 0
0 0 1
A=
1
—k1 —ky —k3 —ky

is Hurwitz. The Jacobian linearization at (z,{) = 0 is:

0, 0,
S| oo Geo0
0

A

where % (0,0) is Hurwitz since 2 = fy(2,0) is exponentially stable

by the proposition in Lecture 12, page 2. Since A is also Hurwitz, all
eigenvalues of J have negative real parts = exponential stability.
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Global asymptotic stability can be guaranteed with additional as-
sumptions on the zero dynamics, such as ISS of

= fO(z/ C)

with respect to the input &:

(=AC P 2= fo(2()

Example: z2=—z+ ZZC p C = —k( Note: the z subsystem is not ISS

(z,¢) = 0is locally exponentially stable, but not globally: solutions
escape in finite time for large z(0).

I/O Linearizing Controller for Tracking

For the output y(¢) to track a reference signal® y4(t), replace (4) with: 2 assumed to be r times differentiable

v=—k1(G —va(t) = ka(G = da(®)) - — ke (G — i) + 307 (1)

Lete; 2 ¢ —ya(t), €22 G —9a(t), ., er 2 G —y " (t). Then:

é1 =€
€ = e3

é = Ae.
ér =0 — yg)(t) = —kie; — -+ — krer

Thus e(t) — 0, that is y(¢) — yq(t) — 0.

If y4(t) and its derivatives are bounded, then ((¢) is bounded. If the
zero dynamics 2 = fy(z,() is ISS with respect to ¢, then z(¢) is also
bounded. Thus, all internal signals are bounded.

Cart-Pole Revisited

Example: Cart/Pole 3 3 Simulation code for this example is
available online

y : output


https://maegantucker.com/ME6402/code/cartpole-simulation/
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1 .
i = M<u+92£sinegsin9c059>
oy Hsin” 6\ m
. u (5)
9:ﬁ — Y cosf — 620 cos Osinf + +mgsin9
{5 +sin”0) m m

In a bit more detail, if we select our system state to be x = (p,p, 0, 0),
with p being the horizontal position of the cart, then our output is
y = p. The system dynamics can be explicitly written as:

T2

M o2
Ty Tsin” 0

1 ; . .
(:;”1 +620sinf — gschosH)

T4

T T

(M 4sin20)

1 (%cos&ézécosesin9+]\{n””gsir19>

The relative degree of the system is 2, as we can see by differentiating
the output twice with respect to time:

Yy="po

y=p

=5 — 4+ 6%¢sinf — gsin 6 cos
o Tsin” 6\ m

The input-output linearizing controller for this system would thus be:
. M
u=—-m (02€sin0 — gsinfcosf + v < + sin® e))
m

where v = —k1(p — pg) — k2(p — Pa)-

As we showed in last class, we can find the zero dynamics, by substi-
tutingy =y =0, and
u* = —m(0*¢sinf — gsin6 cosb)
in the § equation:
6 = % sin 6.
Since the zero dynamics and output dynamics of our system are

decoupled completely, the normal form can be written using the

transformation:
21 €3
z T
T:z+— 2l = |
G 1

@) )
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