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Overview:

• Normal form for input-output feedback linearizable systems

Additional Reading:

• Khalil 13.2

Feedback Linearization (continued)

Nonlinear Changes of Variables

T : Rn → Rn is called a diffeomorphism if its inverse T−1 exists, and
both T and T−1 are continuously differentiable (C1).

Examples:

1. ξ = Tx is a diffeomorphism if T is a nonsingular matrix

2. ξ = sinx is a local diffeomorphism around x = 0, but not global

x

ξ

3. ξ = x3 is not a diffeomorphism because T−1(·) is not C1 at ξ = 0

x

ξ

slope = 0

How to check if ξ = T (x) is a local diffeomorphism?

Implicit Function Theorem1 1 The key idea is that if a function has a
regular Jacobian, then it locally behaves
like a bijection with a smooth inverseSuppose f : Rn × Rn → Rn is C1 and there exists x0 ∈ Rn, ξ0 ∈ Rn

such that
f(x0, ξ0) = 0.
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If ∂f
∂x (x0, ξ0) is nonsingular, then in a neighborhood of (x0, ξ0),

f(x, ξ) = 0

has a unique solution x = g(ξ) where g is C1 at ξ = ξ0.

Corollary: Let f(x, ξ) = T (x) − ξ. If ∂T
∂x is nonsingular at x0, then

T (·) is a local diffeomorphism around x0.

A "Normal Form" that Explicitly Displays the Zero Dynamics

Theorem: If ẋ = f(x) + g(x)u, y = h(x) has a well-defined relative

degree r ≤ n, then there exist a diffeomorphism T : x 7→
[

z

ζ

]
,

z ∈ Rn−r, ζ ∈ Rr, that transforms the system to the form:

ż = f0(z, ζ)

ζ̇1 = ζ2

...

ζ̇r = b(z, ζ) + a(z, ζ)u, y = ζ1.

(1)

In particular, ż = f0(z, 0) represents the zero dynamics. □

To obtain this form, let ζ = [h(x) Lfh(x) . . . Lr−1
f h(x)]T , and

find n− r independent variables z such that ż does not contain u.

Note that the terms b(z, ζ) and a(z, ζ) correspond to Lr
f (x) and

LgL
r−1
f h(x) in the original coordinates.

In summary, this change of coordinates is defined by the map:

T : x 7→



z1(x)
...

zn−r(x)

ζ1(x)

ζ2(x)
...

ζr(x)


=



z1(x)
...

zn−r(x)

h(x)

Lfh(x)
...

Lr−1
f h(x)


, DT =



∂z1
∂x1

. . . ∂z1
∂xn

...
. . .

...
∂zn−r
∂x1

. . . ∂zn−r
∂xn

∂h
∂x1

. . . ∂h
∂xn

∂Lfh
∂x1

. . .
∂Lfh
∂xn

...
. . .

...
∂Lr−1

f h

∂x1
. . .

∂Lr−1
f h

∂xn


(2)

• This map is a diffeomorphism if its Jacobian (DT) has full rank.

• Given a SISO system with a well-defined relative degree r. Then
there exist coordinates zi, i = 1, . . . ,n − r such that the map
T : Rn → Rn is a diffeomorphism.
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Example:

ẋ1 = x2

ẋ2 = αx3 + u

ẋ3 = βx3 − u

y = x1.

Let ζ1 = x1, ζ2 = x2, and note that z = x2 + x3 is independent of
ζ1, ζ2, and ż does not contain u. Thus, the normal form is:

ż = (α+ β)x3 = (α+ β)z − (α+ β)ζ2

ζ̇1 = ζ2

ζ̇2 = αx3 + u = αz − αζ2 + u.

I/O Linearizing Controller in the new coordinates (1):

u =
1

a(z, ζ)

(
− b(z, ζ) + v

)
(3)

v = −k1ζ1 · · · − krζr (4)

where k1, · · · , kr are such that all roots of sr + krs
r−1 + · · ·+ k2s+ k1

have negative real parts.

Theorem: If z = 0 is locally exponentially stable for the zero dynam-
ics ż = f0(z, 0), then (3)–(4) locally exponentially stabilizes x = 0.

Proof: Closed-loop system:

ż = f0(z, ζ)

ζ̇ = Aζ

where

A =


0 1 0 . . .

0 0 1 . . .
. . .

1
−k1 −k2 −k3 . . . −kr


is Hurwitz. The Jacobian linearization at (z, ζ) = 0 is:

J =

[
∂f0
∂z (0, 0) ∂f0

∂ζ (0, 0)
0 A

]

where ∂f0
∂z (0, 0) is Hurwitz since ż = f0(z, 0) is exponentially stable

by the proposition in Lecture 12, page 2. Since A is also Hurwitz, all
eigenvalues of J have negative real parts ⇒ exponential stability.
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Global asymptotic stability can be guaranteed with additional as-
sumptions on the zero dynamics, such as ISS of

ż = f0(z, ζ)

with respect to the input ξ:

ż = f0(z, ζ)ζ̇ = Aζ
ζ

Example: ż = −z + z2ζ, ζ̇ = −kζ Note: the z subsystem is not ISS

(z, ζ) = 0 is locally exponentially stable, but not globally: solutions
escape in finite time for large z(0).

I/O Linearizing Controller for Tracking

For the output y(t) to track a reference signal2 yd(t), replace (4) with: 2 assumed to be r times differentiable

v = −k1(ζ1 − yd(t))− k2(ζ2 − ẏd(t)) · · · − kr(ζr − y
(r−1)
d (t)) + y

(r)
d (t)

Let e1 ≜ ζ1 − yd(t), e2 ≜ ζ2 − ẏd(t), . . . , er ≜ ζr − y
(r−1)
d (t). Then:

ė1 = e2

ė2 = e3

...

ėr = v− y
(r)
d (t) = −k1e1 − · · · − krer


ė = Ae.

Thus e(t) → 0, that is y(t)− yd(t) → 0.

If yd(t) and its derivatives are bounded, then ζ(t) is bounded. If the
zero dynamics ż = f0(z, ζ) is ISS with respect to ζ, then z(t) is also
bounded. Thus, all internal signals are bounded.

Cart-Pole Revisited

Example: Cart/Pole 3 3 Simulation code for this example is
available online

θ ℓ

y : output

u

m

M

https://maegantucker.com/ME6402/code/cartpole-simulation/
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ÿ =
1

M
m + sin2 θ

(
u

m
+ θ̇2ℓ sin θ− g sin θ cos θ

)

θ̈ =
1

ℓ(Mm + sin2 θ)

(
− u

m
cos θ− θ̇2ℓ cos θ sin θ+

M +m

m
g sin θ

) (5)

In a bit more detail, if we select our system state to be x = (p, ṗ, θ, θ̇),
with p being the horizontal position of the cart, then our output is
y = p. The system dynamics can be explicitly written as:

ẋ =


ṗ

p̈

θ̇

θ̈

 =



x2

1
M
m +sin2 θ

(
u
m + θ̇2ℓ sin θ− g sin θ cos θ

)
x4

1
ℓ(Mm +sin2 θ)

(
− u

m cos θ− θ̇2ℓ cos θ sin θ+ M+m
m g sin θ

)


The relative degree of the system is 2, as we can see by differentiating
the output twice with respect to time:

y = p

ẏ = ṗ

ÿ =
1

M
m + sin2 θ

(
u

m
+ θ̇2ℓ sin θ− g sin θ cos θ

)

The input-output linearizing controller for this system would thus be:

u = −m

(
θ̇2ℓ sin θ− g sin θ cos θ+ v

(
M

m
+ sin2 θ

))
where v = −k1(p− pd)− k2(ṗ− ṗd).

As we showed in last class, we can find the zero dynamics, by substi-
tuting y = ẏ = 0, and

u∗ = −m(θ̇2ℓ sin θ− g sin θ cos θ)

in the θ̈ equation:

θ̈ =
g

ℓ
sin θ.

Since the zero dynamics and output dynamics of our system are
decoupled completely, the normal form can be written using the
transformation:

T : x 7→


z1

z2

ζ1

ζ2

 =


x3

x4

x1

x2
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