ME 6402 – Lecture 17 Feedback linearization 2

March 6 2025

Overview:

- Normal form for input-output feedback linearizable systems
- Additional Reading:
- Khalil 13.2

Feedback Linearization (continued)

Nonlinear Changes of Variables

 $T : \mathbb{R}^n \to \mathbb{R}^n$ is called a *diffeomorphism* if its inverse T^{-1} exists, and both T and T^{-1} are continuously differentiable (C^1).

Examples:

- 1. $\xi = Tx$ is a diffeomorphism if *T* is a nonsingular matrix
- 2. $\xi = \sin x$ is a local diffeomorphism around x = 0, but not global

3. $\xi = x^3$ is not a diffeomorphism because $T^{-1}(\cdot)$ is not C^1 at $\xi = 0$

How to check if $\xi = T(x)$ is a local diffeomorphism?

Implicit Function Theorem¹

Suppose $f : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is C^1 and there exists $x_0 \in \mathbb{R}^n$, $\xi_0 \in \mathbb{R}^n$ such that

$$f(x_0,\xi_0)=0.$$

¹ The key idea is that if a function has a regular Jacobian, then it locally behaves like a bijection with a smooth inverse

If $\frac{\partial f}{\partial x}(x_0,\xi_0)$ is nonsingular, then in a neighborhood of (x_0,ξ_0) ,

$$f(x,\xi) = 0$$

has a unique solution $x = g(\xi)$ where g is C^1 at $\xi = \xi_0$.

Corollary: Let $f(x,\xi) = T(x) - \xi$. If $\frac{\partial T}{\partial x}$ is nonsingular at x_0 , then $\overline{T(\cdot)}$ is a local diffeomorphism around x_0 .

A "Normal Form" that Explicitly Displays the Zero Dynamics

<u>Theorem</u>: If $\dot{x} = f(x) + g(x)u$, y = h(x) has a well-defined relative degree $r \leq n$, then there exist a diffeomorphism $T : x \mapsto \begin{bmatrix} z \\ \zeta \end{bmatrix}$, $z \in \mathbb{R}^{n-r}$, $\zeta \in \mathbb{R}^r$, that transforms the system to the form:

$$\begin{aligned} \dot{z} &= f_0(z,\zeta) \\ \dot{\zeta}_1 &= \zeta_2 \\ \vdots \\ \dot{\zeta}_r &= b(z,\zeta) + a(z,\zeta)u, \quad y = \zeta_1. \end{aligned} \tag{1}$$

In particular, $\dot{z} = f_0(z, 0)$ represents the zero dynamics.

To obtain this form, let $\zeta = [h(x) \quad L_f h(x) \quad \dots \quad L_f^{r-1} h(x)]^T$, and find n-r independent variables z such that \dot{z} does not contain u.

Note that the terms $b(z,\zeta)$ and $a(z,\zeta)$ correspond to $L_f^r(x)$ and $L_g L_f^{r-1} h(x)$ in the original coordinates.

In summary, this change of coordinates is defined by the map:

	$\begin{bmatrix} z_1(x) \end{bmatrix}$		$z_1(x)$			$\begin{bmatrix} \frac{\partial z_1}{\partial x_1} \\ \vdots \end{bmatrix}$		$\frac{\partial z_1}{\partial x_n}$
$T:x\mapsto$	\vdots $z_{n-r}(x)$	$\left \begin{array}{c} \vdots \\ -r(x) \end{array} \right $	$= \begin{vmatrix} \vdots \\ z_{n-r}(x) \\ h(x) \\ L_f h(x) \end{vmatrix}$,		$\frac{\frac{\partial z_{n-r}}{\partial x_1}}{\frac{\partial b}{\partial h}}$		$\frac{\partial z_{n-r}}{\partial x_n}$
	$\begin{array}{c c} \zeta_1(x) \\ \zeta_2(x) \end{array}$	=			DT =	$\frac{\frac{\partial h}{\partial x_1}}{\frac{\partial L_f h}{\partial x_1}}$	· · · · · · ·	$\frac{\frac{\partial h}{\partial x_n}}{\frac{\partial L_f h}{\partial x_n}}$
	\vdots $\zeta_r(x)$		$ \begin{array}{c} \vdots \\ L_f^{r-1}h(x) \end{array} $			$\vdots \\ \partial L_f^{r-1}h$	·.	$\left \begin{array}{c} \vdots \\ \partial L_{f}^{r-1}h \end{array} \right $
						$\boxed{\partial x_1}$		$\overline{\partial x_n}$ (2)

- This map is a diffeomorphism if its Jacobian (DT) has full rank.
- Given a SISO system with a well-defined relative degree *r*. Then there exist coordinates *z_i*, *i* = 1,...,*n* − *r* such that the map *T* : ℝⁿ → ℝⁿ is a diffeomorphism.

Example:

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= \alpha x_3 + u \\ \dot{x}_3 &= \beta x_3 - u \\ y &= x_1. \end{aligned}$$

Let $\zeta_1 = x_1$, $\zeta_2 = x_2$, and note that $z = x_2 + x_3$ is independent of ζ_1 , ζ_2 , and \dot{z} does not contain u. Thus, the normal form is:

$$\dot{z} = (\alpha + \beta)x_3 = (\alpha + \beta)z - (\alpha + \beta)\zeta_2$$
$$\dot{\zeta}_1 = \zeta_2$$
$$\dot{\zeta}_2 = \alpha x_3 + u = \alpha z - \alpha \zeta_2 + u.$$

I/O Linearizing Controller in the new coordinates (1):

$$u = \frac{1}{a(z,\zeta)} \left(-b(z,\zeta) + v \right)$$
(3)

$$v = -k_1 \zeta_1 \cdots - k_r \zeta_r \tag{4}$$

where k_1, \dots, k_r are such that all roots of $s^r + k_r s^{r-1} + \dots + k_2 s + k_1$ have negative real parts.

<u>Theorem</u>: If z = 0 is locally exponentially stable for the zero dynamics $\dot{z} = f_0(z, 0)$, then (3)–(4) locally exponentially stabilizes x = 0.

Proof: Closed-loop system:

$$\dot{z} = f_0(z,\zeta)$$

 $\dot{\zeta} = A\zeta$

where

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & \dots \\ & & \ddots & \\ & & & \ddots \\ & & & 1 \\ -k_1 & -k_2 & -k_3 & \dots & -k_r \end{bmatrix}$$

is Hurwitz. The Jacobian linearization at $(z, \zeta) = 0$ is:

$$J = \begin{bmatrix} \frac{\partial f_0}{\partial z}(0,0) & \frac{\partial f_0}{\partial \zeta}(0,0) \\ 0 & A \end{bmatrix}$$

where $\frac{\partial f_0}{\partial z}(0,0)$ is Hurwitz since $\dot{z} = f_0(z,0)$ is exponentially stable by the proposition in Lecture 12, page 2. Since *A* is also Hurwitz, all eigenvalues of *J* have negative real parts \Rightarrow exponential stability. *Global* asymptotic stability can be guaranteed with additional assumptions on the zero dynamics, such as ISS of

$$\dot{z} = f_0(z,\zeta)$$

with respect to the input ξ :

$$\dot{\zeta} = A\zeta$$
 $\dot{\zeta} = f_0(z,\zeta)$

Example: $\dot{z} = -z + z^2 \zeta$, $\dot{\zeta} = -k\zeta$

 $(z, \zeta) = 0$ is locally exponentially stable, but not globally: solutions escape in finite time for large z(0).

I/O Linearizing Controller for Tracking

For the output y(t) to track a reference signal² $y_d(t)$, replace (4) with: $v = -k_1(\zeta_1 - y_d(t)) - k_2(\zeta_2 - \dot{y}_d(t)) \cdots - k_r(\zeta_r - y_d^{(r-1)}(t)) + y_d^{(r)}(t)$ Let $e_1 \triangleq \zeta_1 - y_d(t)$, $e_2 \triangleq \zeta_2 - \dot{y}_d(t)$, ..., $e_r \triangleq \zeta_r - y_d^{(r-1)}(t)$. Then: $\dot{e}_1 = e_2$ $\dot{e}_2 = e_3$ \vdots $\dot{e}_r = v - y_d^{(r)}(t) = -k_1e_1 - \cdots - k_re_r$ $\dot{e} = Ae.$

Thus $e(t) \rightarrow 0$, that is $y(t) - y_d(t) \rightarrow 0$.

If $y_d(t)$ and its derivatives are bounded, then $\zeta(t)$ is bounded. If the zero dynamics $\dot{z} = f_0(z, \zeta)$ is ISS with respect to ζ , then z(t) is also bounded. Thus, all internal signals are bounded.

Cart-Pole Revisited

Example: Cart/Pole 3

u M y : output

Note: the z subsystem is not ISS

 $\ensuremath{^2}\xspace$ assumed to be r times differentiable

³ Simulation code for this example is available online

$$\ddot{y} = \frac{1}{\frac{M}{m} + \sin^2 \theta} \left(\frac{u}{m} + \dot{\theta}^2 \ell \sin \theta - g \sin \theta \cos \theta \right)$$

$$\ddot{\theta} = \frac{1}{\ell(\frac{M}{m} + \sin^2 \theta)} \left(-\frac{u}{m} \cos \theta - \dot{\theta}^2 \ell \cos \theta \sin \theta + \frac{M+m}{m} g \sin \theta \right)$$
(5)

In a bit more detail, if we select our system state to be $x = (p, \dot{p}, \theta, \dot{\theta})$, with p being the horizontal position of the cart, then our output is y = p. The system dynamics can be explicitly written as:

$$\dot{x} = \begin{bmatrix} \dot{p} \\ \ddot{p} \\ \dot{\theta} \\ \ddot{\theta} \end{bmatrix} = \begin{bmatrix} x_2 \\ \frac{1}{\frac{M}{m} + \sin^2 \theta} \left(\frac{u}{m} + \dot{\theta}^2 \ell \sin \theta - g \sin \theta \cos \theta \right) \\ x_4 \\ \frac{1}{\ell(\frac{M}{m} + \sin^2 \theta)} \left(-\frac{u}{m} \cos \theta - \dot{\theta}^2 \ell \cos \theta \sin \theta + \frac{M+m}{m} g \sin \theta \right) \end{bmatrix}$$

The relative degree of the system is 2, as we can see by differentiating the output twice with respect to time:

$$\begin{split} y &= p\\ \dot{y} &= \dot{p}\\ \ddot{y} &= \frac{1}{\frac{M}{m} + \sin^2 \theta} \left(\frac{u}{m} + \dot{\theta}^2 \ell \sin \theta - g \sin \theta \cos \theta \right) \end{split}$$

The input-output linearizing controller for this system would thus be:

$$u = -m\left(\dot{\theta}^2 \ell \sin\theta - g\sin\theta\cos\theta + v\left(\frac{M}{m} + \sin^2\theta\right)\right)$$
$$= -k_1(n - n_1) - k_2(\dot{n} - \dot{n}_1)$$

where $v = -k_1(p - p_d) - k_2(\dot{p} - \dot{p}_d)$.

-

As we showed in last class, we can find the zero dynamics, by substituting $y = \dot{y} = 0$, and

$$u^* = -m(\dot{\theta}^2 \ell \sin \theta - g \sin \theta \cos \theta)$$

in the $\ddot{\theta}$ equation:

$$\ddot{\theta} = \frac{g}{\ell} \sin \theta.$$

Since the zero dynamics and output dynamics of our system are decoupled completely, the normal form can be written using the transformation:

$$T: x \mapsto \begin{bmatrix} z_1 \\ z_2 \\ \zeta_1 \\ \zeta_2 \end{bmatrix} = \begin{bmatrix} x_3 \\ x_4 \\ x_1 \\ x_2 \end{bmatrix}$$