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FEEDBACK LINEARIZATION 1

March 4 2025

Overview:

¢ Relative Degree

¢ Input-Output Linearization
¢ Zero Dynamics

Additional Reading

e Khalil 13.2

Relative Degree

Consider the single-input single-output (SISO) nonlinear system:

&= f(z) +g(x)u

with y € R and v € R.

Relative degree (informal definition): Number of times we need to
take the time derivative of the output to see the input:

. dh(x)
o dt
Oh(z) Oz
dr ot
oh

= Pia) + o) w

=: Lyh(z) =:Lgh(x)

If Lyh(x) # 0 in an open set containing the equilibrium, then the rel-
ative degree is equal to 1. If Lyh(z) = 0, continue taking derivatives:

=: L?«h(x)

If LyL¢h(x) # 0, then relative degree is 2. If Ly L sh(x) = 0, continue.
Definition: Relative Degree. The system (1) has relative degree r if, in a
neighbourhood of the equilibrium,

Lol 'h(z) =0 i=12,...,r -1

LgL''h(x) #0. )

Lh is called the Lie derivative of h
along the vector field f
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Examples:
1. jjl = T
dy = —x} +u €))
y=mn

has relative degree = 2 as shown below:

y=1
Y= =2
y—jszz—x‘;’—i—u

2. SISO linear system:
t=Ax+Bu y=Cxzx

Lyh(z) = CB, LgL¢h(z) =CAB, ..., LyL',7' = CA""'B.

f
CB #0 = relative degree = 1
CB =0, CAB # 0 = relative degree = 2
CB=.---=CA™2B=0, CA™1B # 0 = relative degree = r

The parameters CA™ 1B i =1,2,3,... are called Markov parame-
ters and are invariant under similarity transformations.

3- m'lzxz—i—xg Y=z
Ty = T3 ZJ::ﬁl:xz—l—I‘g
T3 =1u y:j:2+3x%j33 :x3+3x%u

Lgth(x) = 3:17% = 0 when z3 = 0, and # 0 elsewhere. Thus, this
system does not have a well-defined relative degree around x = 0.

Input-Output Linearization

If a system has a well-defined relative degree then it is input-output
linearizable:
y") = Lih(z) + LgL;_lh(x)u

£0
Apply preliminary feedback:
: () + @
U= ———"—|( — z)+wv
LyL h(x) ! 4



where v is a new input to be designed. Then, y(") = v is a linear
system in the form of an integrator chain:

G=0
G =G
ér:'U

where {; =:y = h(z), & =19 = L¢h(z), ..., ¢ =: y(r=1) = L?ilh(x).
To ensure y(t) — 0 as t — oo, apply the feedback:

v =—kiG1 —kaQo — - — kG

= —kih(z) = koLgh(z) — - = ke L} h(z)

(5)

where k1, ..., k, are such that s" + k,s" 1 + - - + kos + k1 has all
roots in the open left half-plane.

Does the controller (4)-(5) achieve asymptotic stability of x = 0?

Not necessarily! It renders the (n — r)-dimensional manifold:

h(z) = Lgh(z) = -~ = L} 'h(z) =0

invariant and attractive. The dynamics restricted to this manifold are
called zero dynamics and determine whether or not = = 0 is stable.

If the origin of the zero dynamics is asymptotically stable, the system
is called minimum phase. If unstable, it is called nonminimum phase.

Example: n =3, r=1

minimum phase nonminimum phase

Finding the Zero Dynamics

Sety =g = --- = y("1 = 0 and substitute (4) with v = 0, that is:
—L?h(m)
LgL:f h(z)

The remaining dynamical equations describe the zero dynamics.
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Example: 1 =X

Ty = ar3+u

. (6)

i3 = fxz —u

y=a
This system has relative degree 2. With 1 = z, = 0 and v* = —aus3,
the remaining dynamical equation is
i3 = (o + B)xs3.

Thus this system is minimum phase if o+ 8 < 0.

Example: Cart/Pole 1 * Simulation code for this example is
available online

O O
y . output

1 .
= M<u+92€sin0—gsin9c059>
H—FSII’I o\m
. ur 7)
0= —r——— — Y cosh — P cosOsin b + +mgsin9
((5 +sin”0) m m

Relative degree = 2.

To find the zero dynamics, substitute y = y = 0, and

uw* = —m(6*¢sinf — gsinf cos )
in the § equation:
6= % sin .

Same as the dynamics of the pole when the cart is held still:

Nonminimum phase because = 0 is unstable for the zero dynamics.


https://maegantucker.com/ME6402/code/cartpole-simulation/
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Appendix: Derivation of Cart-Pole Equations of Motion

We will define our state to be z = [g, ¢] with ¢ = [p, 0] for p being the
horizontal position of the cart and 6 being the angle of the pole with
respect to the vertical. The equations of motion are derived using the
Euler-Lagrange equation.

First, we can compute the kinetic energy of our system in terms of

the cart’s energy and the pendulum’s energy: The simplification in Kpeng comes from
2 in2
cos” +sin” =1

ernd = §m<x127 + ygzy)

- %m((zﬁ + £cos(0)8) + (¢sin(0)6)?)

= %m(pz + 20 cos(8)pd + (% cos?(0)6% + £? sin®(9)6?)

1 . .
= Em(p2 + 20 cos(0)pd + (26%)
Kiotal = Kecart + ernd

1 | .
= E(M +m)p? + ml cos(0)pb + §m€292

Next, we can compute the potential energy of the two subsystems as:

Pcart =0
Poeng = —mgl cos(6)
Ptotal = Peart + Ppend = —mg( COS(@)

Plugging these into our Euler-Lagrange Equation with L = K — P we
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get:
afory on_,
dt \ 9¢; 0q;
d (3 (M+m)p?+ml cos(0)pd+ L me?6?+mge cos(6)) 8(%(M+m)p2+m€cos(@)p9+%m€292+mg€cos(9))_ ’u'
- op 13) _
dt 8(%(M+m)p2+m€cos(9)p9+%mﬁzéz-i-mgfcos(e)) 8(%(M+m)p2+m2cos(9)§9+%mfzéhrmgécos(@)) - 0
09 00 J o
d (| (M+m)p+mlcos(6)0|\ 0 ] B ]
dt ml cos(8)p + me?0 —m/lsin(0)pd — mglsin(0)| |0

—mtsin(0)0p + me cos(0)p + me>h —mtsin(8)pd — mglsin() 0

(M +m)p — mlsin(0)6? +mé cos(@)é] B [ 0 1 [u]

(M +m)p — mlsin(0)0% + ml cos(6)d n
ml cos(0)p + ml2d + mgl sin(6) 0

This can be rearranged to separate j and 4

M+m m(cos(Q)] [p] N [mésin(é‘)éj _ [1] y

m/ cos(f) me? 0 mglsin(6) 0
—_—

M H B

Note that this actually follows our standard robotic equations of
motion (M (q)§ + H(q,4) = Bu) so we can follow the standard
procedure:

§=M""(—H(qq) + Bu)

Plugging all of this into a symbolic solver, we arrive at our prevous
equations of motion:

1 .
b= 35— g+92£sim9fgsir19cose
T T sin” 6\ m

g = ﬁ — Y cosf — 620 cos Bsin ) + M+mgsin9
((5, +sin”0) m m
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