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Overview:

• Second-Order Systems (Khalil Chapter 2)

• Mathematical Foundations (Khalil Chapter 3)

• Lyapunov Stability (Khalil Chapter 4)

• Center Manifold Theory (Khalil Chapter 8.1)

• Region of Attraction (Khalil Chapter 8.2)

Mathematical Foundations (Khalil Chapter 3)

It is necessary to determine that solutions to a nonlinear system will
exist and be unique when studying their behavior. We can reason
about existence and uniqueness using continuity and differentiability
of the vector field f(x).

This discussion can be summarized by the following diagram:

L

C0

C1

x1/3

sat(x)

x2,x3, ...

Here, C0 denotes the set of continuous functions, C1 denotes the set
of continuously differentiable functions, and L denotes the set of
locally Lipschitz functions, defined as:

Definition: Locally Lipschitz. f(·) is locally Lipschitz if every point
x0 has a neighborhood where Lipschitz continuity (∥f(x)− f(y)∥ ≤
L∥x− y∥) holds for all x, y in this neighborhood for some L.

Definition: Globally Lipschitz. f(·) is globally Lipschitz if Lipschitz
continuity holds for all x, y in the entire domain (Rn). (This is the
same as stating that the same L works everywhere.)
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The summary of how these function properties relate to existence
and uniqueness of solutions is as follows:

1. f(·) is C0: Solutions exist on a finite interval [0,T )

2. f(·) is locally Lipschitz: Solutions exist and are unique on a finite
interval [0,T )

3. f(·) is globally Lipschitz: Solutions exist and are unique for all
t ≥ 0

Note 1: Since C1 implies local Lipschitz continuity, we can conclude
that C1 functions exist and have unique solutions on a finite interval.

Note 2: A C1 function is globally Lipschitz iff (∂f∂x ) its gradient is
bounded.

Second-Order Systems (Khalil Chapter 2)

Essentially Nonlinear Phenomena

• Finite Escape Time

• Multiple Isolated Equilibria

• Limit Cycles

• Chaos

Planar (Second-Order) Dynamical Systems

Solution trajectories (x(t) = (x1(t),x2(t))) can be represented as
curves in the phase plane with f(x) represented as a vector field in
the plane. The family of all solution curves is called the phase portrait.

Phase portraits of linear systems (ẋ = Ax) can be categorized based
on the form of their eigenvalues of A: Note that these diagrams are given in

terms of z = T−1x where J = T−1AT
is the Jordan form of A. But the same
patterns apply (albeit slightly skewed)
for the original x coordinates.

1. Distinct Real Eigenvalues: λ1,2
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Planar (Second Order) Dynamical Systems
Chapter 2 in both Sastry and Khalil

Phase Portraits of Linear Systems: ẋ = Ax

• Distinct real eigenvalues

T�1 AT =

"
l1 0
0 l2

#

In z = T�1x coordinates:

ż1 = l1z1, ż2 = l2z2.

The equilibrium is called a node when l1 and l2 have the same
sign (stable node when negative and unstable when positive). It is
called a saddle point when l1 and l2 have opposite signs.

z1z1z1

z2z2z2

l1 < l2 < 0 l1 > l2 > 0 l2 < 0 < l1

stable
node

unstable
node saddle

• Complex eigenvalues: l1,2 = a ⌥ jb

T�1 AT =

"
a �b

b a

#

ż1 = az1 � bz2

ż2 = az2 + bz1
! polar coordinates !

ṙ = ar

q̇ = b

z1z1z1

z2z2z2

stable
focus

unstable
focus center

a < 0 a > 0 a = 0

The phase portraits above assume b > 0 so that the direction of
rotation is counter-clockwise: q̇ = b > 0.
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2. Complex Eigenvalues: λ1,2 = α± jβ
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Planar (Second Order) Dynamical Systems
Chapter 2 in both Sastry and Khalil
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ṙ = ar

q̇ = b
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stable
focus

unstable
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The phase portraits above assume b > 0 so that the direction of
rotation is counter-clockwise: q̇ = b > 0.The Hartman-Grobman Theorem allows us to make conclusion about

when the phase portraits of the linearized system are qualitatively
similar to the nonlinear system.

Theorem: Hartman-Grobman Theorem. If x∗ is a hyperbolic equilib-
rium of ẋ = f(x), then there exists a homeomorphism z = h(x) defined
in a neighborhood of x∗ such that maps trajectories of ẋ = f(x) to those of
ż = Az.

Definition: Hyperbolic Equilibrium.: Linearization has no eigenvalues
on the imaginary axis. Alternatively, the eigenvalues of A have non-
zero real parts.

Scenarios where x∗ is not hyperbolic include those with periodic
orbits. Thus, we have different tools to reason about when periodic
orbits exist or do not exist.

Theorem: Bendixson’s Theorem. For a time-invariant planar system, if
∇ · f(x) = ∂f1

∂x1
+ ∂f2

∂x2
is not identically zero and does not change sign in a

simply connected region D, then D contains no periodic orbits.

Alternatively, to reason about when a periodic orbit must exist, we
use the Poincaré-Bendixson Theorem.

Theorem: Poincaré-Bendixson Theorem. Suppose M is compact and
positively invariant for a planar, time-invariant system. If M contains no
equilibrium points, then M contains a periodic orbit.

This relies on our definition of invariance:

Definition: Invariance. A set M ⊂ Rn is positively (negatively) invari-
ant if, for each x0 ∈ M , ϕ(t,x0) ∈ M for all t ≥ 0 (t ≤ 0). ϕ(t,x0) denotes a trajectory of ẋ = f (x)

with initial condition x(0) = x0.
Condition for positive invariance: If f(x) · n(x) ≤ 0 on the boundary,
then M is positively invariant.
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n(x)

f(x)M

The condition for “no equilibrium points” can be relaxed to contain
one equilibrium as long as its either an unstable focus or an unstable
node.

Lastly, we can reason about periodic orbits using index theory.
Specifically, since the index of a closed curve is equal to the sum of
indices of the equilibria inside, and since a periodic orbit must have
an index of +1, we can conclude that inside any periodic orbit there
must be at least one equilibrium and the indices of the equilibria
enclosed must add up to +1.

Bifurcations

Another tool that is used to study planar systems is bifurcation anal-
ysis. Note that birfucations can exist in higher-order systems too, but
they are restricted to a one-dimensional manifold. A bifurcation is
an abrupt qualitative changes in the phase portrait as a parameter is
varied. We introduced a few common examples of bifurcations:

• Fold Bifurcation

Example: ẋ = µ− x2

If µ > 0, two equilibria: x = ∓√
µ. If µ < 0, no equilibria. Birfucation diagrams sketch the am-

plitude of the equilibrium points
as a function of the bifurcation pa-
rameter. Solid lines represent stable
nodes/foci/limit cycles. Dashed lines
represent unstable nodes/foci/limit
cycles.
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Bifurcations

A bifurcation is an abrupt change in qualitative behavior as a parame-
ter is varied. Examples: equilibria or limit cycles appearing/disappearing,
becoming stable/unstable.

Fold Bifurcation

Also known as “saddle node” or “blue sky” bifurcation.

Example: ẋ = µ � x2

If µ > 0, two equilibria: x = ⌥p
µ. If µ < 0, no equilibria.

“bifurcation diagram”

µ

x

Transcritical Bifurcation

Example: ẋ = µx � x2

Equilibria: x = 0 and x = µ.
∂ f
∂x

= µ � 2x =

(
µ if x = 0
�µ if x = µ

µ < 0 : x = 0 is stable, x = µ is unstable

µ > 0 : x = 0 is unstable, x = µ is stable

µ

x

• transcritical bifurcation

Example: ẋ = µx− x2
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Equilibria: x = 0 and x = µ.
∂f

∂x
= µ− 2x =

{
µ if x = 0
−µ if x = µ

µ < 0 : x = 0 is stable, x = µ is unstable

µ > 0 : x = 0 is unstable, x = µ is stable

µ

x

• supercritical pitchfork bifurcation

Example: ẋ = µx− x3

Equilibria: x = 0 for all µ, x = ∓√
µ if µ > 0.

µ < 0 µ > 0
∂f
∂x

∣∣∣
x=0

= µ stable unstable
∂f
∂x

∣∣∣
x=∓√

µ
= −2µ N/A stable

µ

x

"supercritical pitchfork”

• subcritical pitchfork bifurcation

Example: ẋ = µx+ x3

Equilibria: x = 0 for all µ, x = ∓√−µ if µ < 0.

µ < 0 µ > 0
∂f
∂x

∣∣∣
x=0

= µ stable unstable
∂f
∂x

∣∣∣
x=∓√−µ

= −2µ unstable N/A
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µ

x

"subcritical pitchfork”

Lyapunov Stability (Chapter 4)

Note: We will always assume that the equilibrium is at x = 0. This
can be achieved using a change of coordinates x̃ = x− x∗.

Time-Invariant Systems

Definition: Stability. An equilibrium x = 0 is stable if for each ϵ > 0,
there exist δ > 0 such that

∥x(0)∥ ≤ δ ⇒ ∥x(t)∥ ≤ ϵ ∀t ≥ 0

Definition: Unstable. An equilibrium x = 0 is unstable if it is not
stable.

Definition: Asymptotically Stable. An equilibrium x = 0 is asymptoti-
cally stable if it is stable and x → 0 for all x(0) in a neighborhood of
x(0).

Definition: Globally Asymptotically Stable. An equilibrium x = 0
is globally asymptotically stable if it is asymptotically stable for all
x(0) ∈ Rn.

Theorem: Lyapunov’s Stability Theorem. If there exists a C1 function
V : D → R such that

V (0) = 0, and V (x) > 0 ∀x ∈ D− {0}

and
V̇ (x) :=

∂V

∂x
ẋ ≤ 0, ∀x ∈ D

then x = 0 is stable.

Theorem: Asymptotically Stable in the Sense of Lyapunov. If the
condition in the previous theorem is satisfied for V̇ < 0 for all x ∈ D− {0},
then x = 0 is asymptotically stable.

Theorem: Globally Asymptotically Stable in the Sense of Lyapunov.
If the condition in the previous theorem is satisfied for V̇ < 0 for all x ∈
Rn − {0}, and ∥x∥ → ∞ implies that V (x) → ∞ (i.e., V (x) is radially
unbounded), then x = 0 is globally asymptotically stable.
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Theorem: LaSalle-Krasovskii Invariance Principle. Assume that we
have a Lyapunov function with V̇ ≤ 0 for all x ∈ D. Let S = {x ∈
D s.t. V̇ (x) = 0}. If no no solution can stay identically in S other than the
trivial solution x(t) ≡ 0, then x = 0 is asymptotically stable.

Note: This follows from LaSalle’s Invariance Principle, which states
that every solution starting in the set S will approach the largest
invariant set contained in S. Thus, if this invariant set contains only
the origin, then x(t) → 0.

Theorem: Lyapunov for Linear Systems. A is Hurwitz (ℜ(λ) < 0
for all eigenvalues of A) if and only if for any Q = QT > 0 there exists
P = PT > 0 such that:

ATP + PA = −Q

Moreover, the solution P is unique.

• This theorem originates from the Lyapunov function V (x) = xTPx

with the derivative condition:

V̇ = xT (ATP + PA)x = −xTQx < 0

• The positive definiteness requirement on Q can be relaxed to

ATP + PA = −Q ≤ 0

if (C,A) is observable for Q = CTC.

Theorem: Lyapunov’s Indirect Method. Given a linearization

A =
∂f(x)

∂x

∣∣∣∣
x=0

Then,

1. x = 0 is asymptotically stable for the nonlinear system if ℜ(λ) < 0 for
all eigenvalues of A

2. x = 0 is unstable for the nonlinear system if ℜ(λ) > 0 for some eigenval-
ues of A

3. The linearization fails to provide information about the stability of the
equilibrium if ℜ(λ) = 0 for any eigenvalue of A.

The region in which the linearization is valid can be estimated using
the Region of Attraction which “quantifies” local asymptotic stability.
It can be estimated by finding the largest level set of V that fits into
the set D = {x s.t. V̇ (x) < 0}. A simple but conservative choice for
the Lyapunov function here is V (x) = xTPx.
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D ↗ {x : V (x) ≤ c} ⊂ RA

Theorem: Alternative Statement of Lyapunov’s Theorem. If the fol-
lowing conditions are satisfied:

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥)
V̇ (x) ≤ −α3(∥x∥)

for αi being a class-K function, then x = 0 is asymptotically stable. More-
over,

∥x(t)∥ ≤ α−1
1 (β(α2(∥x(0)∥), t− t0)) , ∀t ≥ t0

where β ∈ KL is the solution to the IVP

ẏ = −α3(α
−1
2 (y)), y(t0) = V (x(t0))

Time-Varying Systems

For time-varying systems ẋ = f(t,x) we have different definitions for
stability.

Definition: Stability. x = 0 is stable if for every ϵ > 0 and t0, there
exists δ > 0 such that

∥x(t0)∥ ≤ δ(t0, ϵ) ⇒ ∥x(t)∥ ≤ ϵ, ∀t ≥ t0

Definition: Uniform Stability. If the same δ works for all t0 (i.e., δ =

δ(ϵ)), then x = 0 is uniformly stable. Alternatively, x = 0 is uniformly
stable if there exists a class-K function α(·) and a constant c > 0 such
that:

∥x(t)∥ ≤ α(∥x(t0)∥)
for all t ≥ t0 and for every initial condition such that ∥x(t0)∥ ≤ c

Definition: Uniformly Asymptotically Stable. x = 0 is uniformly
asymptotically stable if there exists a class KL function β(·, ·) such
that:

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0)

for all t ≥ t0 and for every initial condition such that ∥x(t0)∥ ≤ c.
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Definition: Globally Uniformly Asymptotically Stable. x = 0 is globally
uniformly asymptotically stable if it is uniformly asymptotically
stable for all x(0) ∈ Rn.

Definition: Uniformly Exponentially Stable. x = 0 is uniformly expo-
nentially stable if β(r, s) = kre−λs for some k,λ > 0 such that

∥x(t)∥ ≤ k∥x(t0)∥e−λ(t−t0)

for all t ≥ t0 and for every initial condition such that ∥x(t0)∥ ≤ c.

The Theorems for Lyapunov’s Stability applied to time-varying sys-
tems can be summarized as follows:

• If W1(x) ≤ V (t,x) ≤ W2(x) and V̇ (t,x) = ∂V
∂t + ∂V

∂x f(t,x) ≤ 0 for
some positive definite functions W1(·) and W2(·) on a domain D

that includes the origin, then x = 0 is uniformly stable.

• If, further, V̇ (t,x) ≤ −W3(x) for all x ∈ D for some positive
definite W3(·), then x = 0 is uniformly asymptotically stable.

• If D = Rn and W1(·) is radially unbounded, then x = 0 is globally
uniformly asymptotically stable.

• If Wi = ki∥x∥a for i = 1, 2, 3 and some constants k1, k2, k3, a > 0,
then x = 0 is uniformly exponentially stable.

• If W3 is positive semidefinite. Then if W1(·) is radially unbounded,
f(t,x) is locally Lipschitz in x and bounded in t, and W3(·) is
C1, then W3(x(t)) → 0 as t → ∞. This proves convergence to
S = {x s.t. W3(x) = 0}.

Lastly, for a linear time-varying system ẋ = A(t)x, V (t,x) = xTP (t)x

proves uniform exponential stability (equivalent to uniform asymp-
totic stability for a linear time-varying system) if

1. Ṗ (t) +AT (t)P (t) + P (t)A(t) = −Q(t)

2. for some bounded Q(t): 0 < k3I ≤ Q(t) for all t

3. and if P (t) remains bounded P (t): 0 < k1I ≤ P (t) ≤ k2I

The converse is also true (given a time-varying linear system with a
uniformly exponentially stable originthere exists a symmetric P (t)

satisfying the conditions above).

Center Manifold Theory (Khalil 8.1)

If the linearization A = ∂f
∂x (x)x=0 has some eigenvalues with zero

real part, and the rest have negative real parts, our linearization still
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fails to capture the dynamics of our system. However, we can use the
Center Manifold Theorem to find a lower-dimensional manifold that
captures the dynamics of the system near the equilibrium.

The center manifold theory begins by transforming our system into
the form:

[
y

z

]
= Tx

such that

TAT−1 =

[
A1 0
0 A2

]

with the eigenvalues of A1 having zero real parts and the eigenvalues
of A2 having negative real parts. We will suppose that y ∈ Rk (A
had k eigenvalues with zero real parts) and z ∈ Rn−k (A had n− k

eigenvalues with negative real parts).

Theorem: Center Manifold Theorem. There exists an invariant mani-
fold z = h(y) defined in a neighborhood of x = 0 such that

h(0) = 0,
∂h

∂y
(0) = 0

z = h(y) is called a center manifold and results in the reduced system

ẏ = A1y+ g1(y,h(y)), y ∈ Rk

If y = 0 is asymptotically stable (resp. unstable) for the reduced system,
then x = 0 is asymptotically stable (resp. unstable) for the full system
ẋ = f(x).

We can solve for the center manifold by defining w = z − h(y) and
differentiating ẇ = ż − ∂h

∂y ẏ. We can then solve for h(y) by enforcing
our invariance condition ẇ = 0.

In scenarios where y ∈ R (scalar y), we can expand h(y) as:

h(y) = h2y
2 + h3y

3 + · · ·

and solve for the coefficients. (Note that h0 = h1 = 0 since h(0) =
∂h
∂y (0) = 0).


	Mathematical Foundations (Khalil Chapter 3)
	Second-Order Systems (Khalil Chapter 2)
	Lyapunov Stability (Chapter 4)
	Center Manifold Theory (Khalil 8.1)

