ME 6402 — Lecture 13 *
BACKSTEPPING

February 18 2025

Overview:

* Lyapunov-based design: Backstepping
Additional Reading;:

e Khalil, Chapter 14.3

* Sastry, Chapter 6.8

Clarification

The condition for uniform exponential stability in the Lyapunov
theorem is: If W;(z) = k;||z|| ¢ = 1,2,3, for some constants
k1,k2, k3,0 > 0, then + = 0 is uniformly exponentially stable. No-
tice here that a must be constant across all three terms.

Recall the example:

i = —g(t)z®> where g(t)>1 forall t

V(z) = %J;Z S V() = —g()at < —a* 2 Wi(a)

This is not exponential stability since Wy (z) = Wa(z) = 1||z? but
W3(z) = ||z||*. Thus, since 2 # 4 (the exponents) the system is not
uniformly exponentially stable. This can be confirmed by plotting the
system evolution for 2(0) = 1 and g(¢) = 1. We cannot bound the
solution by ||z (t)| < k|| (to)||e 1),

Simulation of the system x= — x>

1.0+ J— kHX(O)He”‘[""J
0.8 4
0.6
*
0.4 4
0.2 4
0.0 4
T T T T T T
0 2000 4000 6000 8000 10000

Time

* Based on notes created by Murat
Arcak and licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Model Reference Adaptive Control (MRAC) — Revisited

Consider the first order system

y=day+tu
where ¢* € R is unknown.
Reference model:
Ym = —aym +1(t) a >0, r(t) : reference signal.

Goal: Design a controller that guarantees y(t) — ym, (t) — 0 without
the knowledge of a*.

We start by defining a new error variable e(t) = y(t) — ym(¢) and
differentiate to get:

e=9—9gm =a'y+u—(—ayn+r(t))
=a"y+ aym +u—r(t).

If we were to select u = — (a* + a) y + r(t), this simplifies to:
N s’
k*
¢=—aly—ym) =—ae = e(t) — 0exponentially.

However, since we do not know a*, then k* is unknown. To address
this, we can design an adaptive controller:

u=—k(t)y+r(t)
where k(t) is to be designed. Plugging this controller into our error
dynamics, we get:
€=Y—Unm

=a'y+ (=k)y +r(t) = (—aym +r(t))

=a"y+aym — k(t)y + ay — ay

= (a" +a)y—aly—ym) —k(t)y

~— ~—

-

k* e
= —ae — (k(t) —k")y

=k(t)

Use the Lyapunov function: V' = %62 + %152:
V = eé+kk
= e(—ae — ky) + kk
= —ae® — Eey + l~€1~c
= —a® + k(k — ey).

ME 6402 — LECTURE 13 2

The reference signal is the desired input
or trajectory that the controlled system
should follow.



Note k = k (since k* is constant) and choose k = ey so that V =

—aez.

This guarantees stability of (¢,k) = (0,0) and boundedness of
(e(t), k(t)) since the level sets of V = le? + 1% are positively in-
variant. To conclude that e(t) — 0, it remains to show that f(¢, x) is
bounded in ¢. This can be shown by assuming that r(¢) is bounded.
Thus, we can conclude from V = —ae? that e(t) — 0.

Backstepping

Feedback stabilization: Given a control-affine nonlinear system?

i = f(z)+g(x)u (1)

with input v € R and smooth functions f: D —+ R" and g : D — R",
design a control law u = k(x) such that z = 0 is asymptotically stable
for the closed-loop system:

&= f(z) + g(x)k(z).

Backstepping is a technique that simplifies this task for a class of
systems.

Suppose a stabilizing feedback u = k(n), k(0) = 0, is available for:
n=Fn)+Gnu neR"uelR, F(0)=0,

along with a Lyapunov function V' such that

%‘; (F(n) + G(n)k(n)) < —=W(n) <0 Vn#0.

Can we modify k(n) to stabilize the augmented system below?

n=F(n)+Gn)¢
£ =u.

Define the error variable z = £ — k(1) and change variables:

(n,€) = (n, 2):

= F(n)+Gn)k(n) +G(n)z

where k(n,z) = 2k (F(n) + G(n)k(n) + G(n)z). Take the new
Lyapunov function:

3
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Khalil (Sec. 14.3), Sastry (Sec. 6.8)

2 We will show in a later lecture that all
mechanical (robotic) systems can be cast
in this form.
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. ov
ov ov .
= Gy (FO)+GONk)) + 3Gz -+ 2(u )
< — oV
< -Wi(n) :z(u—k’—kafn(}’(n))
Let: u:k—%—‘;G(n)—Kz, K >0.

Then, Vi < —W(n) — K2?> = (1,2) = 0 is asymptotically stable.

e Above we discussed backstepping over a pure integrator. The main
idea generalizes trivially to:

n=Fn)+GHnw
= f(nz)+g(nz)u

where n € R?, 2 € R, and g(n,z) # 0 for all (,z) € R+,
With the preliminary feedback

g(n,x) (_f(n/x) +U> (2)

the z-subsystem becomes a pure integrator: © = v. Substituting the
backstepping control law from above:

v:k—%—‘;G(n)—Kz, 2 x—k(n), K>0

into (2), we get:
1 ov

v <—f(n,x)+l%:— anG(n)—Kz>.

e Backstepping can be applied recursively to systems of the form:3 3 Systems of this form are called “strict
feedback systems.”

i1 = fi(z1) + g1(x1)x2
iy = fo(x1,22) + go(21, 22) 23

i3 = f3(x1, 22, 23) + g3(x1, T2, T3) 74 (3)

Ip = fn(m) +gn($)u

where g;(z1,...,2;) #0forallz € R",i=2,3,--- ,n.
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Design example: Active suspension Krsti¢ et al., Nonlinear and Adaptive
Control Design, Section 2.2.2.

car body
— Q .’L‘a
My Ts
Cal—l—l %ka
© |
S
Mbjs = _ka(l's - fca) - Ca(its - 1.7&)
1
Tq = ZQ A: effective piston surface
Flow: Q = —¢;Q + kfu w: current applied to the solenoid valve (control input)

cy: outflow or dissipation rate

k¢: flow input control gain

Define state variables: x1 = x5, 10 = &5, T3 = Tq, T4 = Q:

T1 =13

. ka, Cq 1

iy = Mb(ﬂh r3) Mb(wz 1 ) ©
o1

I3 = 4

iy = —cpry+kyu.

This system is not in strict recursive form due to the x4 term in 5. To
overcome this problem define:

xr3 =

||>
x>
s
e}

££ 3
and change variables to (x1, 2, 3,§):

T1 =2
k
Ty = —Mabl‘l - %xz + 3
_ ka — cacy . caky "
M, A M, A




Two steps of backstepping starting with the virtual control law:
Iy = k(a:l) = —C1r1 — k‘lx?

4 will stabilize the (z1, z2, Z3) subsystem. Full (z1, 27, T3,§) system:

3

(931,I2,1’3) > E:_]\Zt)z f‘i‘%ji’,

subsystem

The £-subsystem is an asymptotically stable linear system driven by
Z3; therefore the full system is stabilized.

Other Examples

Example:

T1 = SC% + @7

sz =Uu

Treat x; as “virtual” control input for the x1-subsystem:
k(z) = —Kzg —2? K >0

1
Vi(xq) = Ea:%

Apply backstepping:

2 =xp — k(x1) =20 + K11 —l—x%

Zy = u— k

u:k—%—kzq, ky >0
8$1

= (K 42x1) (23 +a22) — 11 —ko(ap + Ky + 27).
=k - =22
a (91'1
Example 2: i1 = (2109 — )23 + (120 + 07 — 1)y

iy = 73 (5)
T3 = U.

Not in strict feedback form because x3 appears too soon. In fact,
this system is not globally stabilizable because the set 12, > 2 is
positively invariant regardless of u:
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The stiff nonlinearity kjz3 prevents
large excursions of xj.

iy =

5 (—f ) + k= LG - K=)
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T2

» X1

To see this, note that
n(z) - f(a,u) = (w122 — g + (2122 + 23 — V)anaz + 2301
and substitute x1xy = 2 :
= (m% +(1+ :c%)ml)xz + z311
= (z% +(1+ x%))zlxz + 2371

= 2:0% +2(1+ x%) + 2377
= 22% + x3a1 + 225 +2 > 0.

>0
Example 3: i1 = Py
. (6)
T2 = U
Treat z; as virtual control and let | aj(x1) = —z1 | which stabilizes the

z1-subsystem, as verified with Lyapunov function V;(z1) = 322.

Then 2; := x5 — a1 (z7) satisfies 2, = u — ¢¢1, and
AL

_ _ 2 3
U= ¢ — —awl x] — kozp = —ajxy — a] — ko (22 + 1)

achieves global asymptotic stability:

1 1 .
Note that we can’t conclude exponential stability due to the quartic
term 2] above (recall the Lyapunov sufficient condition for expo-
nential stability in Lecture 11, p.2). In fact, the linearization of the
closed-loop system proves the lack of exponential stability:

0 0
— M2 =0,—kp.
(00 ] asmon
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