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Overview:

• Lyapunov-based design: Backstepping

Additional Reading:

• Khalil, Chapter 14.3

• Sastry, Chapter 6.8

Clarification

The condition for uniform exponential stability in the Lyapunov
theorem is: If Wi(x) = ki∥x∥a, i = 1, 2, 3, for some constants
k1, k2, k3, a > 0, then x = 0 is uniformly exponentially stable. No-
tice here that a must be constant across all three terms.

Recall the example:

ẋ = −g(t)x3 where g(t) ≥ 1 for all t

V (x) =
1
2
x2 ⇒ V̇ (t,x) = −g(t)x4 ≤ −x4 ≜ W3(x)

This is not exponential stability since W1(x) = W2(x) = 1
2∥x∥2, but

W3(x) = ∥x∥4. Thus, since 2 ̸= 4 (the exponents) the system is not
uniformly exponentially stable. This can be confirmed by plotting the
system evolution for x(0) = 1 and g(t) = 1. We cannot bound the
solution by ∥x(t)∥ ≤ k∥x(t0)∥e−λ(t−t0).
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Model Reference Adaptive Control (MRAC) – Revisited

Consider the first order system

ẏ = a∗y+ u

where a∗ ∈ R is unknown.

Reference model: The reference signal is the desired input
or trajectory that the controlled system
should follow.ẏm = −aym + r(t) a > 0, r(t) : reference signal.

Goal: Design a controller that guarantees y(t)− ym(t) → 0 without
the knowledge of a∗.

We start by defining a new error variable e(t) = y(t) − ym(t) and
differentiate to get:

ė = ẏ− ẏm = a∗y+ u− (−aym + r(t))

= a∗y+ aym + u− r(t).

If we were to select u = − (a∗ + a)︸ ︷︷ ︸
k∗

y+ r(t), this simplifies to:

ė = −a(y− ym) = −ae ⇒ e(t) → 0 exponentially.

However, since we do not know a∗, then k∗ is unknown. To address
this, we can design an adaptive controller:

u = −k(t)y+ r(t)

where k̇(t) is to be designed. Plugging this controller into our error
dynamics, we get:

ė = ẏ− ẏm

= a∗y+ (−k(t)y+ r(t))− (−aym + r(t))

= a∗y+ aym − k(t)y+ ay− ay

= (a∗ + a)︸ ︷︷ ︸
k∗

y− a (y− ym)︸ ︷︷ ︸
e

−k(t)y

= −ae− (k(t)− k∗)︸ ︷︷ ︸
=: k̃(t)

y

Use the Lyapunov function: V = 1
2e

2 + 1
2 k̃

2:

V̇ = eė+ k̃ ˙̃k

= e(−ae− k̃y) + k̃ ˙̃k

= −ae2 − k̃ey+ k̃ ˙̃k

= −ae2 + k̃( ˙̃k− ey).
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Note ˙̃k = k̇ (since k∗ is constant) and choose k̇ = ey so that V̇ =

−ae2.

This guarantees stability of (e, k̃) = (0, 0) and boundedness of
(e(t), k̃(t)) since the level sets of V = 1

2e
2 + 1

2 k̃
2 are positively in-

variant. To conclude that e(t) → 0, it remains to show that f(t,x) is
bounded in t. This can be shown by assuming that r(t) is bounded.
Thus, we can conclude from V̇ = −ae2 that e(t) → 0.

Backstepping
Khalil (Sec. 14.3), Sastry (Sec. 6.8)

Feedback stabilization: Given a control-affine nonlinear system2 2 We will show in a later lecture that all
mechanical (robotic) systems can be cast
in this form.ẋ = f(x) + g(x)u (1)

with input u ∈ R and smooth functions f : D → Rn and g : D → Rn,
design a control law u = k(x) such that x = 0 is asymptotically stable
for the closed-loop system:

ẋ = f(x) + g(x)k(x).

Backstepping is a technique that simplifies this task for a class of
systems.

Suppose a stabilizing feedback u = k(η), k(0) = 0, is available for:

η̇ = F (η) +G(η)u η ∈ Rn,u ∈ R, F (0) = 0,

along with a Lyapunov function V such that

∂V

∂η

(
F (η) +G(η)k(η)

)
≤ −W (η) < 0 ∀η ̸= 0.

Can we modify k(η) to stabilize the augmented system below?

η̇ = F (η) +G(η)ξ

ξ̇ = u.

Define the error variable z = ξ − k(η) and change variables:

(η, ξ) → (η, z):

η̇ = F (η) +G(η)k(η) +G(η)z

ż = u− k̇(η, z)

where k̇(η, z) = ∂k
∂η

(
F (η) + G(η)k(η) + G(η)z

)
. Take the new

Lyapunov function:

V+(η, z) = V (η) +
1
2
z2.
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V̇+ =
∂V

∂η
η̇+ zż

=
∂V

∂η

(
F (η) +G(η)k(η)

)
︸ ︷︷ ︸

≤ −W (η)

+
∂V

∂η
G(η)z + z(u− k̇)︸ ︷︷ ︸

= z
(
u− k̇+

∂V

∂η
G(η)

)

Let: u = k̇− ∂V

∂η
G(η)−Kz, K > 0.

Then, V̇+ ≤ −W (η)−Kz2 ⇒ (η, z) = 0 is asymptotically stable.

• Above we discussed backstepping over a pure integrator. The main
idea generalizes trivially to:

η̇ = F (η) +G(η)x

ẋ = f(η,x) + g(η,x)u

where η ∈ Rn, x ∈ R, and g(η,x) ̸= 0 for all (η,x) ∈ Rn+1.

With the preliminary feedback

u =
1

g(η,x)
(−f(η,x) + v) (2)

the x-subsystem becomes a pure integrator: ẋ = v. Substituting the
backstepping control law from above:

v = k̇− ∂V

∂η
G(η)−Kz, z ≜ x− k(η), K > 0

into (2), we get:

u =
1

g(η,x)

(
−f(η,x) + k̇− ∂V

∂η
G(η)−Kz

)
.

• Backstepping can be applied recursively to systems of the form:3 3 Systems of this form are called “strict
feedback systems.”

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1,x2) + g2(x1,x2)x3

ẋ3 = f3(x1,x2,x3) + g3(x1,x2,x3)x4

...

ẋn = fn(x) + gn(x)u

(3)

where gi(x1, . . . ,xi) ̸= 0 for all x ∈ Rn, i = 2, 3, · · · ,n.
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Design example: Active suspension Krstić et al., Nonlinear and Adaptive
Control Design, Section 2.2.2.

Q xa
xs

ca ka

Mb

car body

Mbẍs = −ka(xs − xa)− ca(ẋs − ẋa)

ẋa =
1
A
Q A: effective piston surface

Flow: Q̇ = −cfQ+ kfu u: current applied to the solenoid valve (control input)

cf : outflow or dissipation rate

kf : flow input control gain

Define state variables: x1 = xs, x2 = ẋs, x3 = xa, x4 = Q:

ẋ1 = x2

ẋ2 = − ka
Mb

(x1 − x3)−
ca
Mb

(x2 −
1
A
x4)

ẋ3 =
1
A
x4

ẋ4 = −cfx4 + kfu.

(4)

This system is not in strict recursive form due to the x4 term in ẋ2. To
overcome this problem define:

x̄3 ≜
ka
Mb

x3 +
ca

MbA
x4

ξ ≜ x3

and change variables to (x1,x2, x̄3, ξ):

ẋ1 = x2

ẋ2 = − ka
Mb

x1 −
ca
Mb

x2 + x̄3

˙̄x3 =
ka − cacf

MbA
x4 +

cakf
MbA

u.
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Two steps of backstepping starting with the virtual control law: The stiff nonlinearity k1x
3
1 prevents

large excursions of x1.

x2 = k(x1) = −c1x1 − k1x
3
1

4 will stabilize the (x1,x2, x̄3) subsystem. Full (x1,x2, x̄3, ξ) system: 4 u =
1

g(η,x)

(
−f (η,x) + k̇− ∂V

∂η G(η)−Kz
)

(x1,x2, x̄3)
subsystem

x̄3
ξ̇=− ka

MbA
ξ + 1

A x̄3

The ξ-subsystem is an asymptotically stable linear system driven by
x̄3; therefore the full system is stabilized.

Other Examples

Example:
ẋ1 = x2

1 + x2

ẋ2 = u

Treat x2 as “virtual” control input for the x1-subsystem:

k(x1) = −Kx1 − x2
1 K > 0

V1(x1) =
1
2
x2

1.

Apply backstepping:

z2 = x2 − k(x1) = x2 +Kx1 + x2
1

ż2 = u− k̇

u = k̇− ∂V1

∂x1
− k2z2, k2 > 0

= −(K + 2x1)(x
2
1 + x2)︸ ︷︷ ︸

= k̇

− x1︸︷︷︸
=

∂V1

∂x1

− k2(x2 +Kx1 + x2
1)︸ ︷︷ ︸

= z2

.

Example 2: ẋ1 = (x1x2 − 1)x3
1 + (x1x2 + x2

3 − 1)x1

ẋ2 = x3

ẋ3 = u.

(5)

Not in strict feedback form because x3 appears too soon. In fact,
this system is not globally stabilizable because the set x1x2 ≥ 2 is
positively invariant regardless of u:
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n(x) =

 x2

x1

0



x1

x2

To see this, note that

n(x) · f(x,u) = [(x1x2 − 1)x3
1 + (x1x2 + x2

3 − 1)x1]x2 + x3x1

and substitute x1x2 = 2 :

=
(
x3

1 + (1 + x2
3)x1

)
x2 + x3x1

=
(
x2

1 + (1 + x2
3)
)
x1x2 + x3x1

= 2x2
1 + 2(1 + x2

3) + x3x1

= 2x2
1 + x3x1 + 2x2

3︸ ︷︷ ︸
≥0

+ 2 > 0.

Example 3:
ẋ1 = x2

1x2

ẋ2 = u
(6)

Treat x2 as virtual control and let α1(x1) = −x1 which stabilizes the

x1-subsystem, as verified with Lyapunov function V1(x1) =
1
2x

2
1.

Then z2 := x2 − α1(x1) satisfies ż2 = u− α̇1, and

u = α̇1 −
∂V1

∂x1
x2

1 − k2z2 = −x2
1x2 − x3

1 − k2(x2 + x1)

achieves global asymptotic stability:

V =
1
2
x2

1 +
1
2
z2

2 ⇒ V̇ = −x1
4 − k2z

2
2 .

Note that we can’t conclude exponential stability due to the quartic
term x4

1 above (recall the Lyapunov sufficient condition for expo-
nential stability in Lecture 11, p.2). In fact, the linearization of the
closed-loop system proves the lack of exponential stability:[

0 0
0 −k2

]
→ λ1,2 = 0,−k2.
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