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time-varying systems and lyapunov design
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Overview:

• Linear Time-Varying Systems

• Differential Lyapunov Equation

• Lyapunov Design Examples

Additional Reading:

• Khalil, Chapter 8.3, 4.6

Review of Lyapunov Stabilty Theorem for Time-Varying Systems

The Lyapunov stability theorems for time-varying systems intro-
duced in the last lecture can be summarized as follows:

1. If W1(x) ≤ V(t, x) ≤ W2(x) and V̇(t, x) ≜ ∂V
∂t + ∂V

∂x f (t, x) ≤ 0 for
some positive definite functions W1(·), W2(·) on a domain D that
includes the origin, then x = 0 is uniformly stable.

x
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2. If, further, V̇(t, x) ≤ −W3(x) ∀x ∈ D for some positive definite
W3(·), then x = 0 is uniformly asymptotically stable.

3. If D = Rn and W1(·) is radially unbounded, then x = 0 is globally
uniformly asymptotically stable.

4. If Wi(x) = ki|x|a, i = 1, 2, 3, for some constants k1, k2, k3, a > 0, then
x = 0 is uniformly exponentially stable.

Example:
ẋ = −g(t)x3 where g(t) ≥ 1 for all t

V(x) =
1
2

x2 ⇒ V̇(t, x) = −g(t)x4 ≤ −x4 ≜ W3(x)

Globally uniformly asymptotically stable but not exponentially sta-
ble.
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What if W3(·) is only semidefinite? Khalil, Section 8.3

Lasalle-Krasovskii Invariance Principle is not applicable to time-
varying systems. Instead, we will have to use the following (weaker)
result.

Theorem: . Suppose W1(x) ≤ V(t, x) ≤ W2(x)

∂V
∂t

+
∂V
∂x

f (t, x) ≤ −W3(x),

where W1(·), W2(·) are positive definite and W3(·) is positive semidefinite.
Suppose, further, W1(·) is radially unbounded, f (t, x) is locally Lipschitz in
x and bounded in t, and W3(·) is C1. Then

W3(x(t)) → 0 as t → ∞.

Note: This proves convergence to S = {x : W3(x) = 0} whereas the
Invariance Principle, when applicable, guarantees convergence to the
largest invariant set within S.

Linear Time-Varying Systems
Khalil Section 4.6, Sastry Section 5.7

Our linear time-varying system can be first introduced as simply a
special case for our general time-varying system:

ẋ = A(t)x x(t) = Φ(t, t0)x(t0) (1)

The state transition matrix Φ(t, t0) satisfies the equations:

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0) (2)

∂

∂t0
Φ(t, t0) = −Φ(t, t0)A(t0) (3)

• No eigenvalue test for stability in the time-varying case:

• For linear systems uniform asymptotic stability is equivalent to
uniform exponential stability:

Theorem: (4.11 in Khalil2). x = 0 is uniformly asymptotically stable if 2 Khalil Thm. 4.11, Sastry Thm. 5.33

and only if

∥Φ(t, t0)∥ ≤ ke−λ(t−t0) for some k > 0, λ > 0.

Example: ẋ = A(t)x. Take V(x) = xT P(t)x:

V̇(x) = xT Ṗ(t)x + ẋT P(t)x + xT P(t)ẋ

= xT(Ṗ + AT P + PA)︸ ︷︷ ︸
≜−Q(t)

x
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If k1 I ≤ P(t) ≤ k2 I and k3 I ≤ Q(t), k1, k2, k3 > 0, then

k1|x|2 ≤ V(t, x) ≤ k2|x|2 and V̇(t, x) ≤ −k3|x|2

⇒ global uniform exponential stability.

• V(t, x) = xT P(t)x proves uniform exp. stability if

(i) Ṗ(t) + AT(t)P(t) + P(t)A(t) = −Q(t)
(ii) 0 < k1 I ≤ P(t) ≤ k2 I
(iii) 0 < k3 I ≤ Q(t) for all t.

The converse is also true:

Theorem: Suppose x = 0 is uniformly exponentially stable, A(t) is
continuous and bounded, Q(t) is continuous and symmetric, and
there exist k3, k4 > 0 such that

0 < k3 I ≤ Q(t) ≤ k4 I for all t.

Then, there exists a symmetric P(t) satisfying (i)–(ii) above.

– For stable linear systems, there always exists quadratic Lya-
punov functions

– Find them by choosing any positive definite Q(t) and solve
(differential) Lyapunov equation.

Proof:

Time-invariant: P =
∫ ∞

0
eATτQeAτdτ

Time-varying: P(t) =
∫ ∞

t
ΦT(τ, t)Q(τ)Φ(τ, t)dτ

Using the Leibniz rule, property (3), and Φ(t, t) = I we obtain:

Ṗ(t) =
∫ ∞

t

(
∂

∂t
ΦT(τ, t)Q(τ)Φ(τ, t) + ΦT(τ, t)Q(τ)

∂

∂t
Φ(τ, t)

)
dτ

− ΦT(t, t)Q(t)Φ(t, t)

=
∫ ∞

t

(
−AT(t)ΦT(τ, t)Q(τ)Φ(τ, t)− ΦT(τ, t)Q(τ)Φ(τ, t)A(t)

)
dτ

− ΦT(t, t)Q(t)Φ(t, t)

= −AT(t)P(t)− P(t)A(t)− Q(t).
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Lyapunov-based Feedback Design Examples

We will next discuss a few different ways in which Lyapunov theory
is used. This will include adaptive control (this lecture), backstepping
(next lecture) and Control Lyapunov Functions (later).

Model Reference Adaptive Control (MRAC)

Let’s consider the first order system

ẏ = a∗y + u

where a∗ ∈ R is unknown.

Goal: Stabilize the origin even when a∗ is unknown and design a
controller that learns a∗. To achieve this estimator convergence, we will
introduce the notion of a reference model.

Reference model: The reference signal is the desired input
or trajectory that the controlled system
should follow.ẏm = −aym + r(t) a > 0, r(t) : reference signal.

Goal: Design a controller that guarantees y(t)− ym(t) → 0 without
the knowledge of a∗.

If we knew a∗, we would choose:

u = −(a∗ + a)︸ ︷︷ ︸
=: k∗

y + r(t) ⇒ ẏ = −ay + r(t).

The tracking error e(t) := y(t)− ym(t) then satisfies:

ė = −ae ⇒ e(t) → 0 exponentially.

Adaptive design when a∗ (therefore, k∗) is unknown:

u = −k(t)y + r(t)

where k̇(t) is to be designed. Then:

ė = ẏ − ẏm = a∗y − k(t)y + aym = −ae − (k(t)− k∗)︸ ︷︷ ︸
=: k̃(t)

y (4)

where adding and subtracting ay gives the final equality.

Use the Lyapunov function: V = 1
2 e2 + 1

2 k̃2:

V̇ = eė + k̃ ˙̃k

= −ae2 − k̃ey + k̃ ˙̃k

= −ae2 + k̃( ˙̃k − ey).



me 6402 – lecture 12 5

Note ˙̃k = k̇ and choose k̇ = ey so that V̇ = −ae2.

This guarantees stability of (e, k̃) = (0, 0) and boundedness of
(e(t), k̃(t)) since the level sets of V = 1

2 e2 + 1
2 k̃2 are positively in-

variant. In addition, if r(t) is bounded, then ym(t) in the reference
model is bounded, and so is y(t) = ym(t) + e(t). Then we can apply
the Theorem from the start of lecture to the time-varying model

ė = −ae − y(t)k̃, ˙̃k = y(t)e,

and conclude from V̇ = −ae2 that e(t) → 0.

Whether k̃(t) → 0 (k(t) → k∗) depends on further properties of the
reference signal r(·) that are beyond the scope of this lecture.
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