ME 6402 – Lecture 12 ¹ TIME-VARYING SYSTEMS AND LYAPUNOV DESIGN February 13 2025

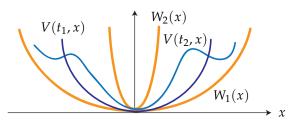
Overview:

- Linear Time-Varying Systems
- Differential Lyapunov Equation
- Lyapunov Design Examples
- Additional Reading:
- Khalil, Chapter 8.3, 4.6

Review of Lyapunov Stabilty Theorem for Time-Varying Systems

The Lyapunov stability theorems for time-varying systems introduced in the last lecture can be summarized as follows:

1. If $W_1(x) \leq V(t,x) \leq W_2(x)$ and $\dot{V}(t,x) \triangleq \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x) \leq 0$ for some positive definite functions $W_1(\cdot)$, $W_2(\cdot)$ on a domain *D* that includes the origin, then x = 0 is uniformly stable.



- 2. If, further, $\dot{V}(t,x) \leq -W_3(x) \ \forall x \in D$ for some positive definite $W_3(\cdot)$, then x = 0 is uniformly asymptotically stable.
- 3. If $D = \mathbb{R}^n$ and $W_1(\cdot)$ is radially unbounded, then x = 0 is globally uniformly asymptotically stable.
- 4. If $W_i(x) = k_i |x|^a$, i = 1, 2, 3, for some constants $k_1, k_2, k_3, a > 0$, then x = 0 is uniformly exponentially stable.

Example:

$$\dot{x} = -g(t)x^3$$
 where $g(t) \ge 1$ for all t
 $V(x) = \frac{1}{2}x^2 \Rightarrow \dot{V}(t,x) = -g(t)x^4 \le -x^4 \triangleq W_3(x)$

Globally uniformly asymptotically stable but not exponentially stable.

¹ Based on notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

What if $W_3(\cdot)$ is only semidefinite?

Lasalle-Krasovskii Invariance Principle is <u>not</u> applicable to timevarying systems. Instead, we will have to use the following (weaker) result.

Theorem: . Suppose $W_1(x) \le V(t, x) \le W_2(x)$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x) \leq -W_3(x),$$

where $W_1(\cdot)$, $W_2(\cdot)$ are positive definite and $W_3(\cdot)$ is positive semidefinite. Suppose, further, $W_1(\cdot)$ is radially unbounded, f(t, x) is locally Lipschitz in x and bounded in t, and $W_3(\cdot)$ is C^1 . Then

 $W_3(x(t)) \to 0 \text{ as } t \to \infty.$

<u>Note</u>: This proves convergence to $S = \{x : W_3(x) = 0\}$ whereas the Invariance Principle, when applicable, guarantees convergence to the largest invariant set within *S*.

Linear Time-Varying Systems

Our linear time-varying system can be first introduced as simply a special case for our general time-varying system:

$$\dot{x} = A(t)x$$
 $x(t) = \Phi(t, t_0)x(t_0)$ (1)

The state transition matrix $\Phi(t, t_0)$ satisfies the equations:

$$\frac{\partial}{\partial t} \Phi(t, t_0) = A(t) \Phi(t, t_0)$$
(2)
$$\frac{\partial}{\partial t_0} \Phi(t, t_0) = -\Phi(t, t_0) A(t_0)$$
(3)

• For linear systems uniform asymptotic stability is equivalent to uniform exponential stability:

Theorem: (4.11 in Khalil²). x = 0 is uniformly asymptotically stable if ² Khalil Thm. 4.11, Sastry Thm. 5.33 and only if

$$\|\Phi(t,t_0)\| \le ke^{-\lambda(t-t_0)}$$
 for some $k > 0, \lambda > 0$.

Example: $\dot{x} = A(t)x$. Take $V(x) = x^T P(t)x$:

$$\dot{V}(x) = x^T \dot{P}(t)x + \dot{x}^T P(t)x + x^T P(t) \dot{x}$$
$$= x^T \underbrace{(\dot{P} + A^T P + PA)}_{\triangleq -Q(t)} x$$

Khalil, Section 8.3

Khalil Section 4.6, Sastry Section 5.7

If $k_1 I \le P(t) \le k_2 I$ and $k_3 I \le Q(t)$, $k_1, k_2, k_3 > 0$, then

$$k_1|x|^2 \le V(t,x) \le k_2|x|^2$$
 and $\dot{V}(t,x) \le -k_3|x|^2$

 \Rightarrow global uniform exponential stability.

• $V(t, x) = x^T P(t) x$ proves uniform exp. stability if

(i)
$$\dot{P}(t) + A^{T}(t)P(t) + P(t)A(t) = -Q(t)$$

(ii) $0 < k_{1}I \le P(t) \le k_{2}I$

(iii) $0 < k_3 I \le Q(t)$ for all t.

The converse is also true:

<u>Theorem</u>: Suppose x = 0 is uniformly exponentially stable, A(t) is continuous and bounded, Q(t) is continuous and symmetric, and there exist k_3 , $k_4 > 0$ such that

$$0 < k_3 I \le Q(t) \le k_4 I$$
 for all t .

Then, there exists a symmetric P(t) satisfying (i)–(ii) above.

- For stable linear systems, there always exists quadratic Lyapunov functions
- Find them by choosing any positive definite Q(t) and solve (differential) Lyapunov equation.

Proof:

Time-invariant:
$$P = \int_0^\infty e^{A^T \tau} Q e^{A \tau} d\tau$$

Time-varying: $P(t) = \int_t^\infty \Phi^T(\tau, t) Q(\tau) \Phi(\tau, t) d\tau$
Using the Leibniz rule, property (3), and $\Phi(t, t) = I$ we obtain:

$$\begin{split} \dot{P}(t) &= \int_{t} \left(\frac{\partial}{\partial t} \Phi^{T}(\tau, t) Q(\tau) \Phi(\tau, t) + \Phi^{T}(\tau, t) Q(\tau) \frac{\partial}{\partial t} \Phi(\tau, t) \right) d\tau \\ &- \Phi^{T}(t, t) Q(t) \Phi(t, t) \\ &= \int_{t}^{\infty} \left(-A^{T}(t) \Phi^{T}(\tau, t) Q(\tau) \Phi(\tau, t) - \Phi^{T}(\tau, t) Q(\tau) \Phi(\tau, t) A(t) \right) d\tau \\ &- \Phi^{T}(t, t) Q(t) \Phi(t, t) \\ &= -A^{T}(t) P(t) - P(t) A(t) - Q(t). \end{split}$$

Lyapunov-based Feedback Design Examples

We will next discuss a few different ways in which Lyapunov theory is used. This will include adaptive control (this lecture), backstepping (next lecture) and Control Lyapunov Functions (later).

Model Reference Adaptive Control (MRAC)

Let's consider the first order system

$$\dot{y} = a^*y + u$$

where $a^* \in \mathbb{R}$ is unknown.

<u>Goal</u>: Stabilize the origin even when a^* is unknown <u>and</u> design a controller that learns a^* . To achieve this *estimator convergence*, we will introduce the notion of a reference model.

Reference model:

$$\dot{y}_m = -ay_m + r(t)$$
 $a > 0$, $r(t)$: reference signal.

<u>Goal</u>: Design a controller that guarantees $y(t) - y_m(t) \rightarrow 0$ without the knowledge of a^* .

If we knew a^* , we would choose:

$$u = -\underbrace{(a^* + a)}_{=:k^*} y + r(t) \quad \Rightarrow \quad \dot{y} = -ay + r(t).$$

The tracking error $e(t) := y(t) - y_m(t)$ then satisfies:

 $\dot{e} = -ae \Rightarrow e(t) \rightarrow 0$ exponentially.

Adaptive design when a^* (therefore, k^*) is unknown:

$$u = -k(t)y + r(t)$$

where $\dot{k}(t)$ is to be designed. Then:

$$\dot{e} = \dot{y} - \dot{y}_m = a^* y - k(t)y + ay_m = -ae - \underbrace{(k(t) - k^*)y}_{=:\tilde{k}(t)} y$$
(4)

where adding and subtracting *ay* gives the final equality. Use the Lyapunov function: $V = \frac{1}{2}e^2 + \frac{1}{2}\tilde{k}^2$:

$$\begin{split} \dot{V} &= e\dot{e} + \tilde{k}\dot{k} \\ &= -ae^2 - \tilde{k}ey + \tilde{k}\dot{k} \\ &= -ae^2 + \tilde{k}(\dot{k} - ey). \end{split}$$

The reference signal is the desired input or trajectory that the controlled system should follow. Note $\dot{\vec{k}} = \dot{k}$ and choose $\dot{\vec{k}} = ey$ so that $\dot{V} = -ae^2$.

This guarantees stability of $(e, \tilde{k}) = (0, 0)$ and boundedness of $(e(t), \tilde{k}(t))$ since the level sets of $V = \frac{1}{2}e^2 + \frac{1}{2}\tilde{k}^2$ are positively invariant. In addition, if r(t) is bounded, then $y_m(t)$ in the reference model is bounded, and so is $y(t) = y_m(t) + e(t)$. Then we can apply the Theorem from the start of lecture to the time-varying model

$$\dot{e} = -ae - y(t)\tilde{k}, \quad \tilde{k} = y(t)e,$$

and conclude from $\dot{V} = -ae^2$ that $e(t) \rightarrow 0$.

Whether $\tilde{k}(t) \to 0$ ($k(t) \to k^*$) depends on further properties of the reference signal $r(\cdot)$ that are beyond the scope of this lecture.