ME 6402 – Lecture 11¹ TIME-VARYING SYSTEMS February 11 2025

Overview:

- Introduce time-varying systems and comparison functions
- Alternative statement of Lyapunov
- Lyapunov theory in time-varying systems

Additional Reading:

• Khalil, Chapter 4.4-4.6

Time-Varying Systems

$$\dot{x} = f(t, x) \quad f(t, 0) \equiv 0 \tag{1}$$

To simplify the definitions of stability and asymptotic stability for the equilibrium x = 0, we first define a class of functions known as "comparison functions."

Comparison Functions

Definition: *Class-K*. A continuous function α : $[0, \alpha) \rightarrow [0, \infty)$ is class- \mathcal{K} (denoted $\alpha \in \mathcal{K}$) if $\alpha(0) = 0$ and strictly monotonic (i.e., zero at zero and strictly increasing).

Definition: *Class*- \mathcal{K}_{∞} . A continuous function α : $[0, \infty) \rightarrow [0, \infty)$ is class- \mathcal{K}_{∞} (denoted $\alpha \in \mathcal{K}_{\infty}$) if it is class- \mathcal{K} and $\alpha(r) \rightarrow \infty$ as $r \rightarrow \infty$.

¹ Based on notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Khalil (Sec. 4.5), Sastry (Sec. 5.2)

Example function code to produce the example plots is provided online.

Definition: *Class-KL*. A continuous function $\beta : [0, \infty) \times [0, \infty) \rightarrow [0, \infty)$ is class-*KL* (denoted $\beta \in KL$) if:

- 1. $\beta(\cdot, s)$ is class- \mathcal{K} for every fixed *s*.
- 2. $\beta(r, \cdot)$ is decreasing and $\beta(r, s) \to 0$ as $s \to \infty$ for every fixed *r*.

3D plot of $\beta(r, s) = Me^{-\alpha s}r$ with M = 1, $\alpha = 1$

Example: $\alpha(r) = \tan^{-1}(r)$ is class- \mathcal{K} , $\alpha(r) = r^c$, c > 0 is class- \mathcal{K}_{∞} , $\overline{\beta(r,s)} = r^c e^{-s}$ is class- \mathcal{KL} .

Proposition: If $V(\cdot)$ is positive definite, then we can find class- \mathcal{K} functions $\alpha_1(\cdot)$ and $\alpha_2(\cdot)$ such that

$$\alpha_1(|x|) \le V(x) \le \alpha_2(|x|). \tag{2}$$

If $V(\cdot)$ is radially unbounded, we can choose $\alpha_1(\cdot)$ to be class- \mathcal{K}_{∞} .

Example:
$$V(x) = x^T P x$$
 $P = P^T > 0$
 $\alpha_1(|x|) = \lambda_{\min}(P)|x|^2$ $\alpha_2(|x|) = \lambda_{\max}(P)|x|^2.$

Modern Statement of Lyapunov

One benefit of class K functions is that they allow us to state Lyapunov's theorem in a more modern form. In essence, this results in a 1-dimensional dynamical system:

$$\dot{V} \leq -\alpha(V)$$

with $\alpha \in \mathcal{K}$ which can be shown (it relies on the Comparison Lemma which is below) to imply that *V* evolves according to a class \mathcal{KL} function (i.e., $V(t) \leq \beta(V(0), t)$).

Theorem: Modern Statement of Lyapunov's Theorem. Let $\dot{x} = f(x)$ where $f : D \to \mathbb{R}^n$ is C^1 and D is a neighborhood of the origin with f(0) = 0. Consider the function $V : D \to \mathbb{R}$ that is C^1 and satisfies V(0) = 0. If the following conditions are satisfied:

$$\alpha_1(\|x\|) \le V(x) \le \alpha_2(\|x\|)$$
$$\dot{V} \le -\alpha_3(\|x\|)$$

for $\alpha_i \in \mathcal{K}$, i = 1, 2, 3, then x = 0 is asymptotically stable. Moreover,

$$|x(t)|| \le \alpha_1^{-1}(\beta(\alpha_2(||x(0)||), t - t_0)), \quad \forall t \ge t_0$$

where $\beta \in \mathcal{KL}$ is the solution of the IVP

$$\dot{y} = -\alpha_3(\alpha_2^{-1}(y)), \quad y(t_0) = V(x(t_0)).$$

<u>Note:</u> The benefit of the modern statement of Lyapunov will hopefully become clearer once we introduce the definitions of stability for non-autonomous (time-varying) systems.

<u>Note</u>: The proof for the modern statement of Lyapunov's Theorem follows from the Comparison Lemma. Details can be found in Khalil, Section 4.4.

Lemma: Comparison Lemma. Let $\alpha \in \mathcal{K}$ be a class- \mathcal{K} function on some *interval with* $a \in \mathbb{R}_{>0}$. *Consider the IVP:*

$$\dot{u}=-\alpha(u), \quad u(0)=u_0,$$

and assume that it has a unique solution² u(t) on [0, a]. If $v : [0, a] \to \mathbb{R}$ is C^1 satisfying:

$$\dot{v} \leq -\alpha(v(t)), \quad v(0) \leq u_0,$$

then $v(t) \leq u(t)$ for all $t \in [0, a]$.

The proof of this comparison lemma follows from the following composition rules for class K functions (Lemma 4.2 in Khalil):

Lemma: (4.2 in Khalil). Let α_1 and α_2 be class \mathcal{K} functions on [0, a), α_3 and α_4 be class \mathcal{K}_{∞} , and β be a class \mathcal{KL} function. We will denote the inverse of α_i by α_i^{-1} . Then the following hold:

- 1. α_1^{-1} is defined on $[0, \alpha_1(a))$ and belongs to class \mathcal{K} .
- 2. α_3^{-1} is defined on $[0, \infty)$ and belongs to class \mathcal{K}_{∞} .
- 3. $\alpha_1 \circ \alpha_2$ belongs to class \mathcal{K} .
- 4. $\alpha_3 \circ \alpha_4$ belongs to class \mathcal{K}_{∞} .
- 5. $\sigma(r,s) = \alpha_1(\beta(\alpha_2(r),s))$ belongs to class \mathcal{KL} .

Time-Varying Stability Definitions

<u>Definition</u>: x = 0 is stable if for every $\epsilon > 0$ and t_0 , there exists $\delta > 0$ such that

$$|x(t_0)| \leq \delta(t_0, \epsilon) \implies |x(t)| \leq \epsilon \quad \forall t \geq t_0.$$

If the same δ works for all t_0 , *i.e.* $\delta = \delta(\epsilon)$, then x = 0 is uniformly stable.

It is easier to define uniform stability and uniform asymptotic stability using comparison functions:

x = 0 is uniformly stable if there exists a class-*K* function α(·) and a constant c > 0 such that

$$|x(t)| \le \alpha(|x(t_0)|)$$

for all $t \ge t_0$ and for every initial condition such that $|x(t_0)| \le c$.

• uniformly asymptotically stable if there exists a class- $\mathcal{KL} \beta(\cdot, \cdot)$ s.t.

$$|x(t)| \le \beta(|x(t_0)|, t - t_0)$$

for all $t \ge t_0$ and for every initial condition such that $|x(t_0)| \le c$.

• globally uniformly asymptotically stable if $c = \infty$.

² Recall that u(t) will have a unique solution if $f(\cdot)$ is Lipschitz continuous. Thus sometimes the condition for the modern Lyapunov Theorem is stated as f is locally Lipschitz continuous.

• uniformly exponentially stable if $\beta(r, s) = kre^{-\lambda s}$ for some $k, \lambda > 0$:

$$|x(t)| \le k|x(t_0)|e^{-\lambda(t-t_0)}$$

for all $t \ge t_0$ and for every initial condition such that $|x(t_0)| \le c$. k > 1 allows for overshoot:

Example: Consider the following system, defined for t > -1:

$$\dot{x} = \frac{-x}{1+t}$$
(3)
$$x(t) = x(t_0)e^{\int_{t_0}^{t} \frac{-1}{1+s}ds} = x(t_0)e^{\log(1+s)|_t^{t_0}}$$
$$= x(t_0)e^{\log\frac{1+t_0}{1+t}} = x(t_0)\frac{1+t_0}{1+t}$$

 $|x(t)| \le |x(t_0)| \implies$ the origin is uniformly stable with $\alpha(r) = r$.

The origin is also asymptotically stable, but not uniformly, because the convergence rate depends on t_0 :

$$x(t) = x(t_0) \frac{1 + t_0}{1 + t_0 + (t - t_0)} = \frac{x(t_0)}{1 + \frac{t - t_0}{1 + t_0}}.$$

Example:

$$\dot{x} = -x^3 \quad \Rightarrow \quad x(t) = \operatorname{sgn}(x(t_0)) \sqrt{\frac{x_0^2}{1 + 2(t - t_0)x_0^2}}$$

x = 0 is asymptotically stable but not exponentially stable.

Proposition: x = 0 is exponentially stable for $\dot{x} = f(x)$, f(0) = 0, if and only if $A \triangleq \frac{\partial f}{\partial x}\Big|_{x=0}$ is Hurwitz, that is $\Re \lambda_i(A) < 0 \ \forall i$.

Although strict inequality in $\Re \lambda_i(A) < 0$ is not necessary for asymptotic stability, it *is* necessary for exponential stability.

Lyapunov's Stability Theorem for Time-Varying Systems

Theorem: (4.8 in Khalil). Let x = 0 be an equilibrium point for the system $\dot{x} = f(t, x)$, where $f : [0, \infty) \times D \to \mathbb{R}^n$ is locally Lipschitz in x on

Khalil, Section 4.5

 $[0,\infty) \times D$ and $D \subset \mathbb{R}^n$ contains the origin. Let $V : [0,\infty) \times D \to \mathbb{R}$ be C^1 such that:

$$W_{1}(x) \leq V(t, x) \leq W_{2}(x)$$
$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t, x) \leq 0$$

 $\forall t \geq 0 \text{ and } \forall x \in D$, where $W_1(x)$ and $W_2(x)$ are continuous positive definite functions on D. Then x = 0 is uniformly stable.

This theorem can be extended to show uniform asymptotic stability:

Theorem: (4.9 in Khalil). Suppose the assupptions of Theorem 4.8 are satisfied, with the inequality strengthened to

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x) \le -W_3(x)$$

 $\forall t \ge 0 \text{ and } \forall x \in D \text{ where } W_3(x) \text{ is a continuous positive definite function}$ on *D*. Then, x = 0 is uniformly asymptotically stable. Moreover, if *r* and *c* are chosen such that $B_r = \{ ||x|| \le r \} \subset D \text{ and } c < \min_{\||x\||=r} W_1(x)$, then every trajectory starting in $\{x \in B_r \text{ s.t. } W_2(x) \le c\}$ satisfies

$$||x(t)|| \le \beta(||x(t_0)||, t-t_0), \quad \forall t \ge t_0 \ge 0$$

for some class \mathcal{KL} function β . Finally, if $D = \mathbb{R}^n$ and $W_1(x)$ is radially unbounded, then x = 0 is globally uniformly asymptotically stable.

These theorems can be summarized as follows:

1. If $W_1(x) \leq V(t,x) \leq W_2(x)$ and $\dot{V}(t,x) \triangleq \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x) \leq 0$ for some positive definite functions $W_1(\cdot)$, $W_2(\cdot)$ on a domain *D* that includes the origin, then x = 0 is uniformly stable.

- 2. If, further, $\dot{V}(t,x) \leq -W_3(x) \ \forall x \in D$ for some positive definite $W_3(\cdot)$, then x = 0 is uniformly asymptotically stable.
- 3. If $D = \mathbb{R}^n$ and $W_1(\cdot)$ is radially unbounded, then x = 0 is globally uniformly asymptotically stable.
- 4. If $W_i(x) = k_i |x|^a$, i = 1, 2, 3, for some constants $k_1, k_2, k_3, a > 0$, then x = 0 is uniformly exponentially stable.

Example:

$$\dot{x} = -g(t)x^3$$
 where $g(t) \ge 1$ for all t
 $V(x) = \frac{1}{2}x^2 \Rightarrow \dot{V}(t,x) = -g(t)x^4 \le -x^4 \triangleq W_3(x)$

Globally uniformly asymptotically stable but not exponentially stable. Take $g(t) \equiv 1$ as a special case:

$$\dot{x} = -x^3 \quad \Rightarrow \quad x(t) = \operatorname{sgn}(x(t_0)) \sqrt{\frac{x_0^2}{1 + 2(t - t_0)x_0^2}}$$

which converges slower than exponentially.

What if $W_3(\cdot)$ is only semidefinite?

Khalil, Section 8.3

Lasalle-Krasovskii Invariance Principle is <u>not</u> applicable to timevarying systems. Instead, we must use a (weaker) result. This will be discussed in the next Lecture.