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Overview:

• Introduce time-varying systems and comparison functions

• Alternative statement of Lyapunov

• Lyapunov theory in time-varying systems

Additional Reading:

• Khalil, Chapter 4.4-4.6

Time-Varying Systems
Khalil (Sec. 4.5), Sastry (Sec. 5.2)

ẋ = f (t, x) f (t, 0) ≡ 0 (1)

To simplify the definitions of stability and asymptotic stability for
the equilibrium x = 0, we first define a class of functions known as
"comparison functions."

Comparison Functions
Example function code to produce the
example plots is provided online.Definition: Class-K. A continuous function α : [0, a) → [0, ∞) is

class-K (denoted α ∈ K) if α(0) = 0 and strictly monotonic (i.e., zero
at zero and strictly increasing).

Definition: Class-K∞. A continuous function α : [0, ∞) → [0, ∞) is
class-K∞ (denoted α ∈ K∞) if it is class-K and α(r) → ∞ as r → ∞.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://nbviewer.org/github/maegant/python-notebooks/blob/main/NonlinearControl/class-k.ipynb
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Definition: Class-KL. A continuous function β : [0, ∞) × [0, ∞) →
[0, ∞) is class-KL (denoted β ∈ KL) if:

1. β(·, s) is class-K for every fixed s.

2. β(r, ·) is decreasing and β(r, s) → 0 as s → ∞ for every
fixed r.

Example: α(r) = tan−1(r) is class-K, α(r) = rc, c > 0 is class-K∞,
β(r, s) = rce−s is class-KL.
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Proposition: If V(·) is positive definite, then we can find class-K
functions α1(·) and α2(·) such that

α1(|x|) ≤ V(x) ≤ α2(|x|). (2)

If V(·) is radially unbounded, we can choose α1(·) to be class-K∞.

Example: V(x) = xT Px P = PT > 0

α1(|x|) = λmin(P)|x|2 α2(|x|) = λmax(P)|x|2.

Modern Statement of Lyapunov

One benefit of class K functions is that they allow us to state Lya-
punov’s theorem in a more modern form. In essence, this results in a
1-dimensional dynamical system:

V̇ ≤ −α(V)

with α ∈ K which can be shown (it relies on the Comparison Lemma
which is below) to imply that V evolves according to a class KL
function (i.e., V(t) ≤ β(V(0), t)).

Theorem: Modern Statement of Lyapunov’s Theorem. Let ẋ = f (x)
where f : D → Rn is C1 and D is a neighborhood of the origin with
f (0) = 0. Consider the function V : D → R that is C1 and satisfies
V(0) = 0. If the following conditions are satisfied:

α1(∥x∥) ≤V(x) ≤ α2(∥x∥)
V̇ ≤ −α3(∥x∥)

for αi ∈ K, i = 1, 2, 3, then x = 0 is asymptotically stable. Moreover,

∥x(t)∥ ≤ α−1
1 (β(α2(∥x(0)∥), t − t0)), ∀t ≥ t0

where β ∈ KL is the solution of the IVP

ẏ = −α3(α
−1
2 (y)), y(t0) = V(x(t0)).

Note: The benefit of the modern statement of Lyapunov will hope-
fully become clearer once we introduce the definitions of stability for
non-autonomous (time-varying) systems.

Note: The proof for the modern statement of Lyapunov’s Theorem
follows from the Comparison Lemma. Details can be found in Khalil,
Section 4.4.

Lemma: Comparison Lemma. Let α ∈ K be a class-K function on some
interval with a ∈ R>0. Consider the IVP:

u̇ = −α(u), u(0) = u0,
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and assume that it has a unique solution2 u(t) on [0, a]. If v : [0, a] → R is 2 Recall that u(t) will have a unique
solution if f (·) is Lipschitz continuous.
Thus sometimes the condition for the
modern Lyapunov Theorem is stated as
f is locally Lipschitz continuous.

C1 satisfying:
v̇ ≤ −α(v(t)), v(0) ≤ u0,

then v(t) ≤ u(t) for all t ∈ [0, a].

The proof of this comparison lemma follows from the following
composition rules for class K functions (Lemma 4.2 in Khalil):

Lemma: (4.2 in Khalil). Let α1 and α2 be class K functions on [0, a),
α3 and α4 be class K∞, and β be a class KL function. We will denote the
inverse of αi by α−1

i . Then the following hold:

1. α−1
1 is defined on [0, α1(a)) and belongs to class K.

2. α−1
3 is defined on [0, ∞) and belongs to class K∞.

3. α1 ◦ α2 belongs to class K.

4. α3 ◦ α4 belongs to class K∞.

5. σ(r, s) = α1(β(α2(r), s)) belongs to class KL.

Time-Varying Stability Definitions

Definition: x = 0 is stable if for every ϵ > 0 and t0, there exists δ > 0
such that

|x(t0)| ≤ δ(t0, ϵ) =⇒ |x(t)| ≤ ϵ ∀t ≥ t0.

If the same δ works for all t0, i.e. δ = δ(ϵ), then x = 0 is uniformly stable.

It is easier to define uniform stability and uniform asymptotic stabil-
ity using comparison functions:

• x = 0 is uniformly stable if there exists a class-K function α(·) and
a constant c > 0 such that

|x(t)| ≤ α(|x(t0)|)

for all t ≥ t0 and for every initial condition such that |x(t0)| ≤ c.

• uniformly asymptotically stable if there exists a class-KL β(·, ·) s.t.

|x(t)| ≤ β(|x(t0)|, t − t0)

for all t ≥ t0 and for every initial condition such that |x(t0)| ≤ c.

• globally uniformly asymptotically stable if c = ∞.
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• uniformly exponentially stable if β(r, s) = kre−λs for some k, λ > 0:

|x(t)| ≤ k|x(t0)|e−λ(t−t0)

for all t ≥ t0 and for every initial condition such that |x(t0)| ≤ c.

k > 1 allows for overshoot:

tt0

k|x(t0)|e−λ(t−t0)
|x(t)|

|x(t0)|

k|x(t0)|

Example: Consider the following system, defined for t > −1:

ẋ =
−x

1 + t
(3)

x(t) = x(t0)e
∫ t

t0
−1
1+s ds

= x(t0)elog(1+s)|t0t

= x(t0)elog 1+t0
1+t = x(t0)

1 + t0

1 + t
|x(t)| ≤ |x(t0)| =⇒ the origin is uniformly stable with α(r) = r.

The origin is also asymptotically stable, but not uniformly, because
the convergence rate depends on t0:

x(t) = x(t0)
1 + t0

1 + t0 + (t − t0)
=

x(t0)

1 + t−t0
1+t0

.

t − t0

increasing t0

x(t)

Example:

ẋ = −x3 ⇒ x(t) = sgn(x(t0))

√
x2

0
1 + 2(t − t0)x2

0

x = 0 is asymptotically stable but not exponentially stable.

Proposition: x = 0 is exponentially stable for ẋ = f (x), f (0) = 0, if

and only if A ≜ ∂ f
∂x

∣∣∣
x=0

is Hurwitz, that is ℜλi(A) < 0 ∀i.

Although strict inequality in ℜλi(A) < 0 is not necessary for asymp-
totic stability, it is necessary for exponential stability.

Lyapunov’s Stability Theorem for Time-Varying Systems
Khalil, Section 4.5

Theorem: (4.8 in Khalil). Let x = 0 be an equilibrium point for the
system ẋ = f (t, x), where f : [0, ∞)× D → Rn is locally Lipschitz in x on
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[0, ∞)× D and D ⊂ Rn contains the origin. Let V : [0, ∞)× D → R be
C1 such that:

W1(x) ≤ V(t, x) ≤ W2(x)
∂V
∂t

+
∂V
∂x

f (t, x) ≤ 0

∀t ≥ 0 and ∀x ∈ D, where W1(x) and W2(x) are continuous positive
definite functions on D. Then x = 0 is uniformly stable.

This theorem can be extended to show uniform asymptotic stability:

Theorem: (4.9 in Khalil). Suppose the assupmtions of Theorem 4.8 are
satisfied, with the inequality strengthened to

∂V
∂t

+
∂V
∂x

f (t, x) ≤ −W3(x)

∀t ≥ 0 and ∀x ∈ D where W3(x) is a continuous positive definite function
on D. Then, x = 0 is uniformly asymptotically stable. Moreover, if r and c
are chosen such that Br = {∥x∥ ≤ r} ⊂ D and c < min∥x∥=r W1(x), then
every trajectory starting in {x ∈ Br s.t. W2(x) ≤ c} satisfies

∥x(t)∥ ≤ β(∥x(t0)∥, t − t0), ∀t ≥ t0 ≥ 0

for some class KL function β. Finally, if D = Rn and W1(x) is radially
unbounded, then x = 0 is globally uniformly asyumptotically stable.

These theorems can be summarized as follows:

1. If W1(x) ≤ V(t, x) ≤ W2(x) and V̇(t, x) ≜ ∂V
∂t + ∂V

∂x f (t, x) ≤ 0 for
some positive definite functions W1(·), W2(·) on a domain D that
includes the origin, then x = 0 is uniformly stable.

x
W1(x)

W2(x)
V(t1, x)

V(t2, x)

2. If, further, V̇(t, x) ≤ −W3(x) ∀x ∈ D for some positive definite
W3(·), then x = 0 is uniformly asymptotically stable.

3. If D = Rn and W1(·) is radially unbounded, then x = 0 is globally
uniformly asymptotically stable.

4. If Wi(x) = ki|x|a, i = 1, 2, 3, for some constants k1, k2, k3, a > 0, then
x = 0 is uniformly exponentially stable.
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Example:
ẋ = −g(t)x3 where g(t) ≥ 1 for all t

V(x) =
1
2

x2 ⇒ V̇(t, x) = −g(t)x4 ≤ −x4 ≜ W3(x)

Globally uniformly asymptotically stable but not exponentially sta-
ble. Take g(t) ≡ 1 as a special case:

ẋ = −x3 ⇒ x(t) = sgn(x(t0))

√
x2

0
1 + 2(t − t0)x2

0

which converges slower than exponentially.

What if W3(·) is only semidefinite? Khalil, Section 8.3

Lasalle-Krasovskii Invariance Principle is not applicable to time-
varying systems. Instead, we must use a (weaker) result. This will be
discussed in the next Lecture.
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