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Overview:

• Further tools for studying systems based on their linearization

• Define region of attraction

• Obtain Lyapunov estimates of the region of attraction

Additional Reading:

• Khalil, Chapter 4.3-4.7, 8.2

Motivation

In the last class, we introduced the Lyapunov equation2 and showed 2 PA + AT P = −Q

that it can be used to test whether or not a matrix A is Hurtwitz, by
defining some positide definite matrix Q and solving the Lyapunov
equation for P. Then, if the Lyapunov equation has a positive definite
solution, we conclude that A is Hurwitz.

However, this method has no computational advantage over calcu-
lating the eigenvalues of A. In fact, the eigenvalues of A actually tell
us more about the behavior of the system compared to solving the
Lyapunov equation.

Importantly, the benefit of the Lyapunov equation is rather as a pro-
cedure for finding a Lyapunov function for any linear system ẋ = Ax
when A is Hurwitz, and then allowing us to draw conclusions about
the system when Ax is perturbed (including a nonlinear perturba-
tion).

TLDR; We will establish that V = xT Px (derived using the linearized
system) is locally a Lyapunov function for the nonlinear system.

Lyapunov’s Linearization Method

Let’s go back to our nonlinear system:

ẋ = f (x), f (0) = 0,

where f : D → Rn is C1 and D ⊂ Rn is a neighborhood of the
equilibrium point x = 0.

We can rewrite the nonlinear system to be in the form ẋ = Ax + g(x)
by leveraging the mean value theorem3: 3 If f (x) is C1 on [a, b] then there exists c

such that

f ′(c) =
f (b)− f (a)

b − a

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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∂ fi
∂x

(zi) =
fi(x)− fi(0)

x − 0

with zi being a point on the line segment connecting 0 and x. This
can be rearranged to get our desired form:

fi(x) =���fi(0) +
∂ fi
∂x

(zi)x

=
∂ fi
∂x

(0)x +

[
∂ fi
∂x

(zi)−
∂ fi
∂x

(0)
]

x︸ ︷︷ ︸
gi(x)

f (x) = Ax + g(x)

The function gi(x) satisfies:

|gi(x)| ≤
∥∥∥∥∂ fi

∂x
(zi)−

∂ fi
∂x

(0)
∥∥∥∥ ∥x∥

By continuity of [∂ f /∂x], we see that

∥g(x)∥
∥x∥ → 0 as ∥x∥ → 0

This suggests that in a small neighborhood of the origin we can ap-
proximate the nonlinear system by its linearization about the origin.

The following theorem provides the conditions under which we can
draw conclusions about the stability of the origin as an equilibrium
point for the nonlinear system by investigating the stability as an
equilibrium point for the linear system. This is known as Lyapunov’s
indirect method.

Theorem: (4.7 in Khalil). Let x = 0 be an equilibrium point for the
nonlinear system ẋ = f (x), where f : D → Rn is C1 and D ⊂ Rn is a
neighborhood of the origin. Let

A =
∂ f (x)

∂x

∣∣∣∣
x=0

Then,

1. If ℜ{λi(A)} < 0 for all eigenvalues of A, then the origin is
asymptotically stable for the nonlinear system.

2. If ℜ{λi(A)} > 0 for some eigenvalue of A, then the origin is
unstable for the nonlinear system.

Note: We can conclude only local asymptotic stability from this lin-
earization. Inconclusive if A has eigenvalues on the imaginary axis.



me 6402 – lecture 10 3

Proof: Find P = PT > 0 such that AT P + PA = −Q < 0. Use V(x) =
xT Px as a Lyapunov function for the nonlinear system ẋ = Ax + g(x).

V̇(x) = xT Pẋ + ẋT Px

= xT P(Ax + g(x)) + (Ax + g(x))T Px

= xT(PA + AT P)x + 2xT Pg(x)

= −xTQx + 2xT Pg(x)

The second term is (in general) indefinite, but since we know that
∥g(x)∥/∥x∥ → 0 as x → 0, we can find a ball around the origin
where the second term is negative definite. This is mathematically
stated as: for any γ > 0, there exists r > 0 such that

∥g(x)∥ < γ∥x∥, ∀∥x∥ < r

see the illustration below for the case x ∈ R.

|x|
γ|x|

r

|g(x)|
γ′|x|

r′

We can use this to bound our previous expression for V̇(x):

V̇(x) = −xTQx + 2xT Pg(x)

< −xTQx + 2γ∥P∥∥x∥2, ∀∥x∥ < r

This can be further bounded by observing the bounds on xTQx:

λmin(Q)|x|2 ≤ xTQx ≤ λmax(Q)|x|2

Thus, plugging this bound into our expression:

V̇(x) < −λmin(Q)|x|2 + 2γ∥P∥|x|2

< − [λmin(Q)− 2γ∥P∥] |x|2

Finally, we can choose γ < λmin(Q)
2∥P∥ so that V̇(x) is negative definite

in a ball of radius r(γ) around the origin. We can then appeal to
Lyapunov’s Stability Theorem (previous lecture) to conclude (local)
asymptotic stability.

Region of Attraction

RA = {x : ϕ(t, x) → 0} (1)
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“Quantifies” local asymptotic stability. Global asymptotic stability:
RA = Rn.

Proposition: If x = 0 is asymptotically stable, then its region of at-
traction is an open, connected, invariant set. Moreover, the boundary
is formed by trajectories.

Example: van der Pol system in reverse time:

ẋ1 = −x2

ẋ2 = x1 − x2 + x3
2

(2)

The boundary is the (unstable) limit cycle. Trajectories starting within
the limit cycle converge to the origin.

∨∨

Note: A limit cycle is an isolated periodic orbit.

Example: bistable switch:

ẋ1 = −ax1 + x2

ẋ2 =
x2

1
1 + x2

1
− bx2

(3)

x1

x2

Estimating the Region of Attraction with a Lyapunov Function

Suppose V̇(x) < 0 in D − {0}. The level sets of V inside D are
invariant and trajectories starting in them converge to the origin.
Therefore we can use the largest levet set of V that fits into D as an
(under)approximation of the region of attraction.



me 6402 – lecture 10 5

D ↗
{x : V(x) ≤ c} ⊂ RA

This estimate depends on the choice of Lyapunov function. A simple
(but often conservative) choice is: V(x) = xT Px where P is selected
for the linearization (see p.1).

Example
Code demonstrating this example is

provided online.Consider again the van der Pol system (a slightly different version for
now):

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2

We will leverage our Lyapunov equation to find the region of attrac-
tion.

First, we linearize the system about the origin:

A =
∂ f (x)

∂x

∣∣∣∣
x=0

=

[
0 −1
1 −1

]

We can observe that A is Hurwitz, with eigenvalues λ = −0.5 ±
0.866i. We can then find a P such that AT P + PA = −Q where Q is
positive definite.

Selecting Q = I, the unique solution for P (the solution to the Lya-
punov equation PA + AT P = −I) is:

P =

[
1.5 −0.5
−0.5 1

]

Thus, the quadratic function V(x) = xT Px is a Lypaunov function for
the system in a certain neighborhood of the origin.

Since we want to estimate the region of attraction, we need to find
the largest level set of V(x) that fits into the domain D such that

Ωc = {V(x) ≤ c}

https://maegantucker.com/ME6402/code/ra-approximation/
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First, checking our derivative condition:

V̇(x) = ẋT Px + xT Pẋ

=
[
−x2 x1 + (x2

1 − 1)x2

] [ 1.5 −0.5
−0.5 1

] [
x1

x2

]

+
[

x1 x2

] [ 1.5 −0.5
−0.5 1

] [
−x2

x1 + (x2
1 − 1)x2

]
= 2(−1.5x1x2 + 0.5x2

2 − 0.5x1(x1 + (x2
1 − 1)x2) + x2(x1 + (x2

1 − 1)x2))

= 2(0.5x2
2 − 0.5x2

1 − 0.5x3
1x2 + x2

2x2
1)

= −(x2
1 + x2

2)− (x3
1x2 − 2x2

1x2
2)

≤ −∥x∥2
2 + |x1||x1x2||x1 − 2x2|

≤ −∥x∥2
2 +

√
5

2
∥x∥4

2

which uses |x1| ≤ ∥x∥2, |x1x2| ≤ ∥x∥2
2/2, and |x1 − 2x2| ≤

√
5∥x∥2.

Thus, we can conclude that V̇(x) is negative definite within a ball of
radius r2 = 2√

5
= 0.8944 around the origin.

Finally, we can find a level set within this open ball (Ωc ⊂ Br(0)) by
choosing:

c < min
∥x∥2=r

V(x) = λmin(P)r2

which gives us:

c = 0.617 < 0.69(0.8944) = 0.6171

The set Ωc with c = 0.6171 is then an underapproximation of the
region of attraction for the origin.

A less conservative estimate can be obtained by plotting contours of
V̇(x) = 0 and V(x) = c for increasing values of c until we find the
largest level set that fits into the domain {V̇(x) < 0}.
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