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Linear Systems

x=Ax, x(t)=2x €R" (1)

Here, A is an n x n constant matrix. This linear system has the fol-
lowing properties:

1. Solutions always exist, and are given in closed form

x(t) = At xy, ¢ >t

2. Solutions exist for all —co <t < oo
3. Solutions are unique
4. The set of equilibrium points is the nullspace of A (i.e., connected)

5. Periodic solutions are only marginally stable, never stable (asym-
potically or exponentially)

Nonlinear Systems

In comparison, nonlinear systems are more complex but also more
expressive. We will consider nonlinear systems of the form:

1= f(x), x(to) € R" ()
with f: R" — R".

This system is time-invariant. We can also consider time-varying
systems:

¥=f(x) f:R"—>R" time-invariant (autonomous)
¥=f(t,x) f:RxR"—R" time-varying (non-autonomous)

When the system has a control input # € R™, the linear and nonlin-
ear system dynamics are:

x=Ax+Bu — x=f(xu) (3)

* These notes are loosely based on

notes created by Murat Arcak and
licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike
4.0 International License.

We use the shorthand notation & = f(x)

for 4x(t) = f(x(t)).

Sometimes the nonlinear system can be
written as ¥ = f(x) + g(x)u, which is
called control-affine form.
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Nonlinear System Analysis and Design

® Analysis (first half of course): Determine stability, convergence, etc

of x = f(x)

¢ Design (second half of course): Choose u as a function of x to
achieve desired behavior

Motivating Scalar Example

Logistic growth model in population dynamics
B !
x-f(x)-r(l—f>x, r>0 K>0 (4) r

x > 0 denotes the population, K is called the carrying capacity, and r
is the intrinsic growth rate. K

A4

For systems with a scalar state variable x € R, stability can be deter-
mined from the sign of f(x) around the equilibrium. In this example f(x)
f(x) > 0forx € (0,K), and f(x) < 0 for x > K; therefore

x =0 unstable equilibrium G >
x = K asymptotically stable.

In general, x = x* is an equilibrium for x = f(x) if f(x*) =0

Linearization

Local stability properties of x* can be determined by linearizing the
vector field f(x) at x*: Note this is the same as f(x) ~ f(x*) +

frxm)(x = x).
fx*+x)=f(x")+ % % 4 higher order terms (5)

=0
£ A

for ¥ = x — x* Thus, the linearized model is:

i = A% (6)

If RA;(A) < 0 for each eigenvalue A; of A, then x* is asymp. stable.

If RA;(A) > 0 for some eigenvalue A; of A, then x* is unstable.
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Example: Logistic growth model above:

f(x)

f(0)>0 f(K)<0
unstable stable

Caveats:

1. Only local properties can be determined from the linearization.
Example: The logistic growth model linearized at x = 0 (¥ = rx)
would incorrectly predict unbounded growth of x(t). In reality,
x(t) = K.

2. If RA;(A) < 0 with equality for some i, then linearization is
inconclusive as a stability test. Higher order terms determine
stability.

Example: flx) =23 vs. flx) =—x°

A A

£'(0) = 0 in each case, but one is stable and the other is unstable.

Motivating Example 2
Let’s consider the pendulum system with a damping coefficient k:

¢mb = —kld — mgsin 6 (7)

or

.._—k. g .
0= WijsmG (8)




NONLINEAR CONTROL SYSTEMS—LECTURE 1 NOTES 4

Note: These dynamics can be derived from the Lagrangian:
L£(6,0) = KE — PE

_ Lee mgl cos 0

2
with the equations of motion given via the Euler-Lagrange equations
(d’Alembert Principle): The damping torque acting on the
pendulum is -£(k€) for the planar
d [dL oL . pendulum.
at (89) 0 - Text
d 2 S0 24
= (me0) + mgesing = —ke%
ml?*0 4+ mglsin@ = —k(>f
i+ sing = — L
L m
0=——0—Fsino

Define x = [ z ] State space: S' x RR.

The system dynamics & can be rewritten in terms of this state as:

¥ = 9 o 9 - X2 ( )
8 |-k6-8sing| | —Lx,—$sinx ?
Equilibria: (0,0) and (7,0)

] (stable) at x; =0

dx | —$cosx; —K

af_[ 0 11_ -§ -

(unstable) at x; = v

9.8 Figure 1: Phase portrait of the pendu-
lum for the undamped case k = 0 with
m=1¢=98(=1.
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