ECE 6552 — Lecture 6 *

CENTER MANIFOLD THEORY AND CHAOS IN DISCRETE-
TIME

January 23 2025

Overview:

¢ Center Manifold Theory
¢ Discrete-time Systems

¢ Chaos in Discrete-time
Additional Reading;:

¢ Khalil, Chapter 8.1

e Sastry, Chapter 7.6.1

Motivation for Center Manifold Theory

Remark: Center manifold theory is used to study stability of equilib-
rium points when linearization fails.

Let = 0 be an equilibrium point for the
nonlinear system

i = f(z)

where f: D — R" is continuously differentiable and D is a neighbor-
hood of the origin. Let

0
A=) s
Then,
1. z* = 0 is asymptotically stable if R()\;) < 0 for all eigenvalues of
A.

2. z* = 0 is unstable if R()\;) > 0 for some eigenvalue of A.

Note: If A has some eigenvalues with zero real parts and the rest
have negative real parts, then the linearization fails.

Let’s assume that A has k eigenvalues with zero real parts and m =
n — k eigenvalues with negative real parts:

® One option: analyze a n-th order nonlinear system

* Second option: analyze a lower order nonlinear system (center
manifold theory will dictate that this order is the number of eigen-
values such that ®(\;) = 0)

* Based on notes created by Murat
Arcak and licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

Khalil (Section 8.1), Sastry (Section
7.6.1)
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Mathematical Preliminaries

A k-dimensional manifold in R™ (1 < k < n) is informally the
solution to

n(z) =0
with n: R® — R % sufficiently smooth.
Example:
The unit circle:
{z € R*| 2% + 2} =1}
is a one-dimensional manifold in R?.

The unit sphere:

n
{z € R" s.t. fo =1}
=1
is a n — 1 dimensional manifold in R™.

A manifold is an invariant manifold if:
n(z(0)) =0 = n(z(t)) =0 Vie[0,{1) CR

where [0,¢1) is any time interval over which z(t) is defined.

Center Manifold Theory
&= f(z) f(0)=0 (1)
Suppose A = % has k eigenvalues will zero real parts, and
=0
m=n-—k eigenvaﬁles with negative real parts.
Define [ Y| = T such that
z
rar-t— |4 O
0 A

where the eigenvalues of A; have zero real parts and the eigenvalues
of A; have negative real parts.

Rewrite & = f(z) in the new coordinates:

y=Ay+ gy z2)

2=Az+ p(y, 2) o

9:(0,0) =0, 5%(0,0) = 0, %(0,0) = 0,i = 1,2.

Theorem 1: There exists an invariant manifold z = h(y) defined in a
neighborhood of the origin such that

h(0) =0 Z—Z(o) —0.
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g1 and g inheret the properties of f in
the equation:

i = f(z) = Az + f(z)

with f(z) = f(z) — §L(2) |om0,
which has the properties f(0) = 0 and
o —

7z(0)=0

2
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Y
<

(g ] 322
T

z = h(y) is called a center manifold in this case.

Reduced System: § = Ayy + g1(y, h(y)) y € RF

Theorem 2: If y = 0 is asymptotically stable (resp., unstable) for the
reduced system, then = = 0 is asymptotically stable (resp., unstable)
for the full system @ = f(z).

Characterizing the Center Manifold

Define w £ z — h(y) and note that it satisfies

on

=Az+ gy, z) — 3y

(Aly + 9 (y,Z))~

The invariance of z = h(y) means that w = 0 implies @ = 0. Thus,
the expression above must vanish when we substitute z = h(y):

Azh(y) + 20,0(0) ~ G (A1 + 13 b)) =0,

To find h(y) solve this partial differential equation for i as a function
on y.

If the exact solution is unavailable, an approximation might be suffi-
cient.

For scalar y, expand h(y) as
h(y) = hay? + -+ hpy” + O(yP*1)

where h; = hg = 0 because h(0) = %Z(O) = 0. The notation O(yP*1)
refers to the higher order terms of power p + 1 and above.

Example (8.2 from Khalil):

y=yz
t=—z+ay® a#0
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This is of the form (2) with ¢1(y,2) = vz, g2(y,2) = ay?, Ay = —1.
Thus h(y) must satisfy

oh
— 2 _ — f—
h(y) + ay 9 yh(y) = 0.

Try h(y) = hay? 4+ O(y):

0= —hay? + O(4®) + ay* — (2hay + O(y*))y(ha® + O(?))
= (a—h)y* + O(y°)
= hy=a

Reduced System: ¢ = y(ay® + O(y?)) = ay® + O(y*).
If a < 0, the full systems is asymptotically stable. If a > 0 unstable.

Discrete-Time Models and a Chaos Example

CT: i(t) = f(z(t)) DT: x,1 = f(zn) n=0,1,2,...
f(z*)=0 f(z*) =a* (“fixed point”)

¢ £

RN (A) <0 where A2 % . I\i(A)] <1 where A2 % s
1/ (x*) < 0 for first order system |f/(z*)| <1 for first order system

These criteria are inconclusive if the respective inequality is not strict,
but for first order systems we can determine stability graphically:

Cobweb Diagrams for First Order Discrete-Time Systems

Example: x,1 = sin(z,) has unique fixed point at 0. Stability test
above inconclusive since f/(0) = 1. However, the "cobweb" diagram
below illustrates the convergence of iterations to 0:
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Yy=2x

In discrete time, even first order systems can exhibit oscillations:

Detecting Cycles Analytically

flp)=qa fla)=p = [f(f(p)=p [f(fl@)=2q

For the existence of a period-2 cycle, the map f(f(-)) must have two
)

/(
fixed points in addition to the fixed points of f(

Period-3 cycles: fixed points of f(f(f(+))).

Chaos in a Discrete Time Logistic Growth Model

Tpil = 7'(1 - ffn)xn (3)

Range of interest: 0 <2 <1 (zp,>1 = 2,41 <0)

r/4

We will study the range 0 < r < 4 so that f(z) = r(1 — z)z maps
[0,1] onto itself.

5
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z* =0 and

Fixed points: = =r(1 —2)z = { v =1-Lifr>1,

r <1: z* = 0 unique and stable fixed point

0 1

r > 1: x = 0 unstable because f'(0) =r > 1

A4
8

Note that a transcritical bifurcation occurred at » = 1, creating the
new equilibrium

Evaluate its stability using f'(z*) = r(1 —2z*) =2 —r.

r<3 = |f/(z")] <1 (stable)
r>3 = |f(z*)| > 1 (unstable).

At r = 3, a period-2 cycle is born:

f(f(z))

(1= f(z))f(x)
r(1—r(1—2)z)r(1 —z)z
2

t(1—2)(1—r+rz—rz?)

I
.

0=r?z(1—z)(1—r+rz—ra®) —z

Factor out = and (z — 1+ 1), find the roots of the quotient:

CrH1F/(r=3)(r+1)
2r

7
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A 4

0 P 1 _% g 1
This period-2 cycle is stable when r < 1+ /6 = 3.4494:

d
—fE@)| =@ ) = @)f () =4+2r -1
x a=p
[4+2r —1?| <1 = 3<r<1+V6=34494
At r = 3.4494, a period-4 cycle is born!

A

0 1 3 344

ry =23 period-2 cycle born
ry = 3.4494  period-4 cycle born
r3 =3.544  period-8 cycle born
ry = 3.564 period-16 cycle born

Teo = 3.5699
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“period doubling bifurcations”

After r > rq, chaotic behavior for a window of r, followed by win-

dows of periodic behavior (e.g., period-3 cycle around r = 3.83).

Below is the cobweb diagram for » = 3.9 which is in the chaotic
regime:
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