

ECE 6552 – Lecture 6 ¹

CENTER MANIFOLD THEORY AND CHAOS IN DISCRETE-TIME

January 23 2025

¹ Based on notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Overview:

- Center Manifold Theory
- Discrete-time Systems
- Chaos in Discrete-time

Additional Reading:

- Khalil, Chapter 8.1
- Sastry, Chapter 7.6.1

Motivation for Center Manifold Theory

Remark: Center manifold theory is used to study stability of equilibrium points when linearization fails.

Khalil (Section 8.1), Sastry (Section 7.6.1)

Theorem: (4.7 from Khalil). Let $x = 0$ be an equilibrium point for the nonlinear system

$$\dot{x} = f(x)$$

where $f : D \rightarrow \mathbb{R}^n$ is continuously differentiable and D is a neighborhood of the origin. Let

$$A = \frac{\partial f}{\partial x}(x) \mid_{x=0}$$

Then,

1. $x^* = 0$ is asymptotically stable if $\Re(\lambda_i) < 0$ for all eigenvalues of A .
2. $x^* = 0$ is unstable if $\Re(\lambda_i) > 0$ for some eigenvalue of A .

Note: If A has some eigenvalues with zero real parts and the rest have negative real parts, then the linearization fails.

Let's assume that A has k eigenvalues with zero real parts and $m = n - k$ eigenvalues with negative real parts:

- One option: analyze a n -th order nonlinear system
- Second option: analyze a lower order nonlinear system (center manifold theory will dictate that this order is the number of eigenvalues such that $\Re(\lambda_i) = 0$)

Mathematical Preliminaries

A **k -dimensional manifold** in \mathbb{R}^n ($1 \leq k < n$) is informally the solution to

$$\eta(x) = 0$$

with $\eta : \mathbb{R}^n \rightarrow \mathbb{R}^{n-k}$ sufficiently smooth.

Example:

The unit circle:

$$\{x \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 1\}$$

is a one-dimensional manifold in \mathbb{R}^2 .

The unit sphere:

$$\{x \in \mathbb{R}^n \text{ s.t. } \sum_{i=1}^n x_i^2 = 1\}$$

is a $n-1$ dimensional manifold in \mathbb{R}^n .

A manifold is an **invariant manifold** if:

$$\eta(x(0)) = 0 \implies \eta(x(t)) \equiv 0 \quad \forall t \in [0, t_1] \subset \mathbb{R}$$

where $[0, t_1]$ is any time interval over which $x(t)$ is defined.

Center Manifold Theory

$$\dot{x} = f(x) \quad f(0) = 0 \quad (1)$$

Suppose $A \triangleq \left. \frac{\partial f}{\partial x} \right|_{x=0}$ has k eigenvalues with zero real parts, and $m = n - k$ eigenvalues with negative real parts.

Define $\begin{bmatrix} y \\ z \end{bmatrix} = Tx$ such that

$$TAT^{-1} = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$$

where the eigenvalues of A_1 have zero real parts and the eigenvalues of A_2 have negative real parts.

Rewrite $\dot{x} = f(x)$ in the new coordinates:

$$\begin{aligned} \dot{y} &= A_1 y + g_1(y, z) \\ \dot{z} &= A_2 z + g_2(y, z) \end{aligned} \quad (2)$$

$$g_i(0, 0) = 0, \frac{\partial g_i}{\partial y}(0, 0) = 0, \frac{\partial g_i}{\partial z}(0, 0) = 0, i = 1, 2.$$

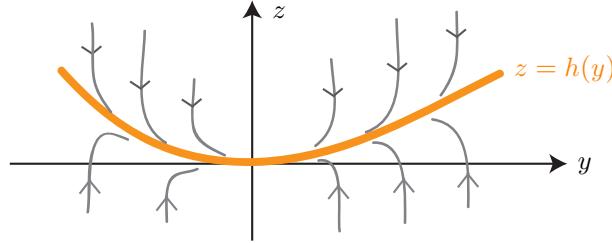
Theorem 1: There exists an invariant manifold $z = h(y)$ defined in a neighborhood of the origin such that

$$h(0) = 0 \quad \frac{\partial h}{\partial y}(0) = 0.$$

g_1 and g_2 inherit the properties of \tilde{f} in the equation:

$$\dot{x} = f(x) = Ax + \tilde{f}(x)$$

with $\tilde{f}(x) = f(x) - \left. \frac{\partial f}{\partial x}(x) \right|_{x=0}$, which has the properties $\tilde{f}(0) = 0$ and $\frac{\partial \tilde{f}}{\partial x}(0) = 0$



$z = h(y)$ is called a *center manifold* in this case.

$$\text{Reduced System: } \dot{y} = A_1 y + g_1(y, h(y)) \quad y \in \mathbb{R}^k$$

Theorem 2: If $y = 0$ is asymptotically stable (resp., unstable) for the reduced system, then $x = 0$ is asymptotically stable (resp., unstable) for the full system $\dot{x} = f(x)$.

Characterizing the Center Manifold

Define $w \triangleq z - h(y)$ and note that it satisfies

$$\begin{aligned} \dot{w} &= \dot{z} - \frac{\partial h}{\partial y} \dot{y} \\ &= A_2 z + g_2(y, z) - \frac{\partial h}{\partial y} (A_1 y + g_1(y, z)). \end{aligned}$$

The invariance of $z = h(y)$ means that $w = 0$ implies $\dot{w} = 0$. Thus, the expression above must vanish when we substitute $z = h(y)$:

$$A_2 h(y) + g_2(y, h(y)) - \frac{\partial h}{\partial y} (A_1 y + g_1(y, h(y))) = 0.$$

To find $h(y)$ solve this partial differential equation for h as a function on y .

If the exact solution is unavailable, an approximation might be sufficient.

For scalar y , expand $h(y)$ as

$$h(y) = h_2 y^2 + \dots + h_p y^p + O(y^{p+1})$$

where $h_1 = h_0 = 0$ because $h(0) = \frac{\partial h}{\partial y}(0) = 0$. The notation $O(y^{p+1})$ refers to the higher order terms of power $p + 1$ and above.

Example (8.2 from Khalil):

$$\begin{aligned} \dot{y} &= yz \\ \dot{z} &= -z + ay^2 \quad a \neq 0 \end{aligned}$$

This is of the form (2) with $g_1(y, z) = yz$, $g_2(y, z) = ay^2$, $A_2 = -1$. Thus $h(y)$ must satisfy

$$-h(y) + ay^2 - \frac{\partial h}{\partial y} yh(y) = 0.$$

Try $h(y) = h_2 y^2 + O(y^3)$:

$$\begin{aligned} 0 &= -h_2 y^2 + O(y^3) + ay^2 - (2h_2 y + O(y^2))y(h_2 y^2 + O(y^3)) \\ &= (a - h_2)y^2 + O(y^3) \\ \implies h_2 &= a \end{aligned}$$

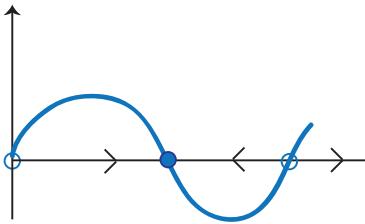
Reduced System: $\dot{y} = y(ay^2 + O(y^3)) = ay^3 + O(y^4)$.

If $a < 0$, the full system is asymptotically stable. If $a > 0$ unstable.

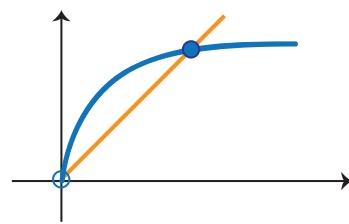
Discrete-Time Models and a Chaos Example

CT: $\dot{x}(t) = f(x(t))$
 $f(x^*) = 0$

DT: $x_{n+1} = f(x_n)$ $n = 0, 1, 2, \dots$
 $f(x^*) = x^*$ ("fixed point")



Asymptotic stability criterion:
 $\Re \lambda_i(A) < 0$ where $A \triangleq \frac{\partial f}{\partial x} \Big|_{x=x^*}$
 $f'(x^*) < 0$ for first order system

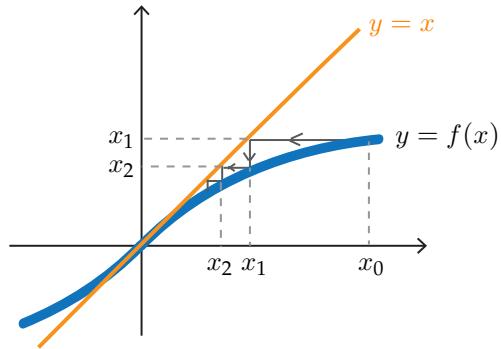


Asymptotic stability criterion:
 $|\lambda_i(A)| < 1$ where $A \triangleq \frac{\partial f}{\partial x} \Big|_{x=x^*}$
 $|f'(x^*)| < 1$ for first order system

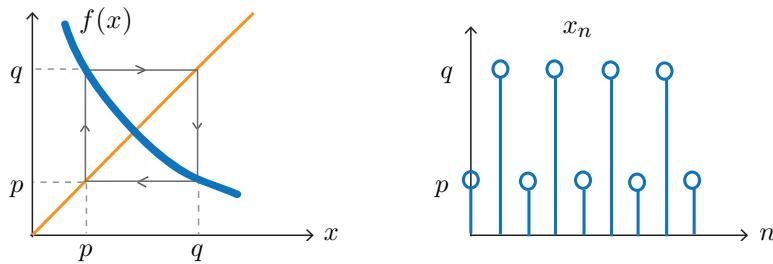
These criteria are inconclusive if the respective inequality is not strict, but for first order systems we can determine stability graphically:

Cobweb Diagrams for First Order Discrete-Time Systems

Example: $x_{n+1} = \sin(x_n)$ has unique fixed point at 0. Stability test above inconclusive since $f'(0) = 1$. However, the "cobweb" diagram below illustrates the convergence of iterations to 0:



In discrete time, even first order systems can exhibit oscillations:



Detecting Cycles Analytically

$$f(p) = q \quad f(q) = p \quad \Rightarrow \quad f(f(p)) = p \quad f(f(q)) = q$$

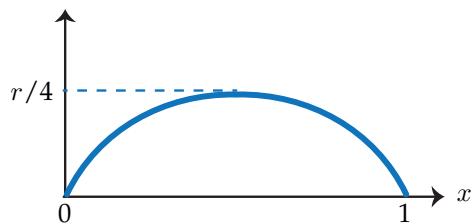
For the existence of a period-2 cycle, the map $f(f(\cdot))$ must have two fixed points in addition to the fixed points of $f(\cdot)$.

Period-3 cycles: fixed points of $f(f(f(\cdot)))$.

Chaos in a Discrete Time Logistic Growth Model

$$x_{n+1} = r(1 - x_n)x_n \quad (3)$$

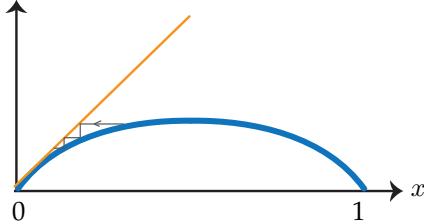
Range of interest: $0 \leq x \leq 1$ ($x_n > 1 \Rightarrow x_{n+1} < 0$)



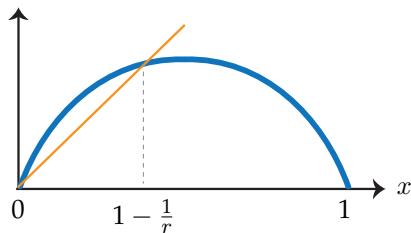
We will study the range $0 \leq r \leq 4$ so that $f(x) = r(1 - x)x$ maps $[0, 1]$ onto itself.

Fixed points: $x = r(1 - x)x \Rightarrow \begin{cases} x^* = 0 & \text{and} \\ x^* = 1 - \frac{1}{r} & \text{if } r > 1. \end{cases}$

$r \leq 1$: $x^* = 0$ unique and stable fixed point



$r > 1$: $x = 0$ unstable because $f'(0) = r > 1$



Note that a transcritical bifurcation occurred at $r = 1$, creating the new equilibrium

$$x^* = 1 - \frac{1}{r}.$$

Evaluate its stability using $f'(x^*) = r(1 - 2x^*) = 2 - r$.

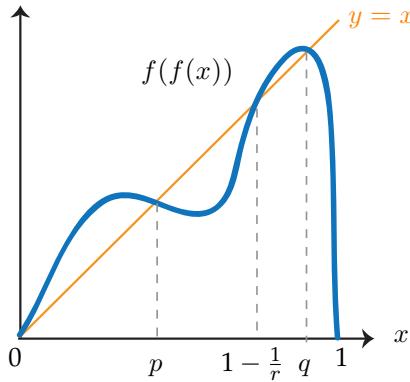
$$\begin{aligned} r < 3 &\Rightarrow |f'(x^*)| < 1 \text{ (stable)} \\ r > 3 &\Rightarrow |f'(x^*)| > 1 \text{ (unstable).} \end{aligned}$$

At $r = 3$, a period-2 cycle is born:

$$\begin{aligned} x &= f(f(x)) \\ &= r(1 - f(x))f(x) \\ &= r(1 - r(1 - x)x)r(1 - x)x \\ &= r^2x(1 - x)(1 - r + rx - rx^2) \\ 0 &= r^2x(1 - x)(1 - r + rx - rx^2) - x \end{aligned}$$

Factor out x and $(x - 1 + \frac{1}{r})$, find the roots of the quotient:

$$p, q = \frac{r + 1 \mp \sqrt{(r - 3)(r + 1)}}{2r}$$

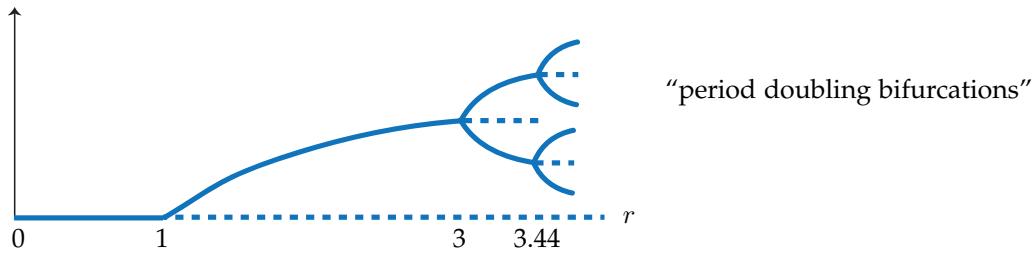


This period-2 cycle is stable when $r < 1 + \sqrt{6} = 3.4494$:

$$\frac{d}{dx}f(f(x))\Big|_{x=p} = f'(f(p))f'(p) = f'(p)f'(q) = 4 + 2r - r^2$$

$$|4 + 2r - r^2| < 1 \Rightarrow 3 < r < 1 + \sqrt{6} = 3.4494$$

At $r = 3.4494$, a period-4 cycle is born!



$$r_1 = 3 \quad \text{period-2 cycle born}$$

$$r_2 = 3.4494 \quad \text{period-4 cycle born}$$

$$r_3 = 3.544 \quad \text{period-8 cycle born}$$

$$r_4 = 3.564 \quad \text{period-16 cycle born}$$

⋮

$$r_\infty = 3.5699$$

After $r > r_\infty$, chaotic behavior for a window of r , followed by windows of periodic behavior (e.g., period-3 cycle around $r = 3.83$).

Below is the cobweb diagram for $r = 3.9$ which is in the chaotic regime:

