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center manifold theory and chaos in discrete-
time
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Overview:

• Center Manifold Theory

• Discrete-time Systems

• Chaos in Discrete-time

Additional Reading:

• Khalil, Chapter 8.1

• Sastry, Chapter 7.6.1

Motivation for Center Manifold Theory
Khalil (Section 8.1), Sastry (Section
7.6.1)Remark: Center manifold theory is used to study stability of equilib-

rium points when linearization fails.

Theorem: (4.7 from Khalil). Let x = 0 be an equilibrium point for the
nonlinear system

ẋ = f(x)

where f : D → Rn is continuously differentiable and D is a neighbor-
hood of the origin. Let

A =
∂f

∂x
(x) |x=0

Then,

1. x∗ = 0 is asymptotically stable if ℜ(λi) < 0 for all eigenvalues of
A.

2. x∗ = 0 is unstable if ℜ(λi) > 0 for some eigenvalue of A.

Note: If A has some eigenvalues with zero real parts and the rest
have negative real parts, then the linearization fails.

Let’s assume that A has k eigenvalues with zero real parts and m =

n− k eigenvalues with negative real parts:

• One option: analyze a n-th order nonlinear system

• Second option: analyze a lower order nonlinear system (center
manifold theory will dictate that this order is the number of eigen-
values such that ℜ(λi) = 0)

http://creativecommons.org/licenses/by-nc-sa/4.0/
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Mathematical Preliminaries

A k-dimensional manifold in Rn (1 ≤ k < n) is informally the
solution to

η(x) = 0

with η : Rn → Rn−k sufficiently smooth.

Example:
The unit circle:

{x ∈ R2 | x2
1 + x2

2 = 1}
is a one-dimensional manifold in R2.

The unit sphere:

{x ∈ Rn s.t.
n

∑
i=1

x2
i = 1}

is a n− 1 dimensional manifold in Rn.

A manifold is an invariant manifold if:

η(x(0)) = 0 =⇒ η(x(t)) ≡ 0 ∀t ∈ [0, t1) ⊂ R

where [0, t1) is any time interval over which x(t) is defined.

Center Manifold Theory

ẋ = f(x) f(0) = 0 (1)

Suppose A ≜
∂f

∂x

∣∣∣∣
x=0

has k eigenvalues will zero real parts, and

m = n− k eigenvalues with negative real parts.

Define

[
y

z

]
= Tx such that

TAT−1 =

[
A1 0
0 A2

]
where the eigenvalues of A1 have zero real parts and the eigenvalues
of A2 have negative real parts.

Rewrite ẋ = f(x) in the new coordinates: g1 and g2 inheret the properties of f̃ in
the equation:

ẋ = f (x) = Ax+ f̃ (x)

with f̃ (x) = f (x) − ∂f
∂x (x) |x=0,

which has the properties f̃ (0) = 0 and
∂f
∂x (0) = 0

ẏ = A1y+ g1(y, z)

ż = A2z + g2(y, z)
(2)

gi(0, 0) = 0, ∂gi
∂y (0, 0) = 0, ∂gi

∂z (0, 0) = 0, i = 1, 2.

Theorem 1: There exists an invariant manifold z = h(y) defined in a
neighborhood of the origin such that

h(0) = 0
∂h

∂y
(0) = 0.
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y

z = h(y)

z

z = h(y) is called a center manifold in this case.

Reduced System: ẏ = A1y+ g1(y,h(y)) y ∈ Rk

Theorem 2: If y = 0 is asymptotically stable (resp., unstable) for the
reduced system, then x = 0 is asymptotically stable (resp., unstable)
for the full system ẋ = f(x).

Characterizing the Center Manifold

Define w ≜ z − h(y) and note that it satisfies

ẇ = ż − ∂h

∂y
ẏ

= A2z + g2(y, z)− ∂h

∂y

(
A1y+ g1(y, z)

)
.

The invariance of z = h(y) means that w = 0 implies ẇ = 0. Thus,
the expression above must vanish when we substitute z = h(y):

A2h(y) + g2(y,h(y))− ∂h

∂y

(
A1y+ g1(y,h(y))

)
= 0.

To find h(y) solve this partial differential equation for h as a function
on y.

If the exact solution is unavailable, an approximation might be suffi-
cient.

For scalar y, expand h(y) as

h(y) = h2y
2 + · · ·+ hpy

p +O(yp+1)

where h1 = h0 = 0 because h(0) = ∂h
∂y (0) = 0. The notation O(yp+1)

refers to the higher order terms of power p+ 1 and above.

Example (8.2 from Khalil):

ẏ = yz

ż = −z + ay2 a ̸= 0
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This is of the form (2) with g1(y, z) = yz, g2(y, z) = ay2, A2 = −1.
Thus h(y) must satisfy

−h(y) + ay2 − ∂h

∂y
yh(y) = 0.

Try h(y) = h2y
2 +O(y3):

0 = −h2y
2 +O(y3) + ay2 − (2h2y+O(y2))y(h2y

2 +O(y3))

= (a− h2)y
2 +O(y3)

=⇒ h2 = a

Reduced System: ẏ = y(ay2 +O(y3)) = ay3 +O(y4).

If a < 0, the full systems is asymptotically stable. If a > 0 unstable.

Discrete-Time Models and a Chaos Example

CT: ẋ(t) = f(x(t)) DT: xn+1 = f(xn) n = 0, 1, 2, . . .
f(x∗) = 0 f(x∗) = x∗ (“fixed point”)

Asymptotic stability criterion: Asymptotic stability criterion:

ℜλi(A) < 0 where A ≜ ∂f
∂x

∣∣∣
x=x∗

|λi(A)| < 1 where A ≜ ∂f
∂x

∣∣∣
x=x∗

f ′(x∗) < 0 for first order system |f ′(x∗)| < 1 for first order system

These criteria are inconclusive if the respective inequality is not strict,
but for first order systems we can determine stability graphically:

Cobweb Diagrams for First Order Discrete-Time Systems

Example: xn+1 = sin(xn) has unique fixed point at 0. Stability test
above inconclusive since f ′(0) = 1. However, the "cobweb" diagram
below illustrates the convergence of iterations to 0:
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x0x1x2

x1
x2

y = x

y = f(x)

In discrete time, even first order systems can exhibit oscillations:

nx

f(x) xn

p q

p

q

p

q

Detecting Cycles Analytically

f(p) = q f(q) = p =⇒ f(f(p)) = p f(f(q)) = q

For the existence of a period-2 cycle, the map f(f(·)) must have two
fixed points in addition to the fixed points of f(·).

Period-3 cycles: fixed points of f(f(f(·))).

Chaos in a Discrete Time Logistic Growth Model

xn+1 = r(1 − xn)xn (3)

Range of interest: 0 ≤ x ≤ 1 (xn > 1 ⇒ xn+1 < 0)

x

r/4

0 1

We will study the range 0 ≤ r ≤ 4 so that f(x) = r(1 − x)x maps
[0, 1] onto itself.
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Fixed points: x = r(1 − x)x ⇒
{

x∗ = 0 and
x∗ = 1 − 1

r if r > 1.

r ≤ 1: x∗ = 0 unique and stable fixed point

x
0 1

r > 1: x = 0 unstable because f ′(0) = r > 1

x
1 − 1

r
0 1

Note that a transcritical bifurcation occurred at r = 1, creating the
new equilibrium

x∗ = 1 − 1
r

.

Evaluate its stability using f ′(x∗) = r(1 − 2x∗) = 2 − r.

r < 3 ⇒ |f ′(x∗)| < 1 (stable)

r > 3 ⇒ |f ′(x∗)| > 1 (unstable).

At r = 3, a period-2 cycle is born:

x = f(f(x))

= r(1 − f(x))f(x)

= r(1 − r(1 − x)x)r(1 − x)x

= r2x(1 − x)(1 − r+ rx− rx2)

0 = r2x(1 − x)(1 − r+ rx− rx2)− x

Factor out x and (x− 1 + 1
r ), find the roots of the quotient:

p, q =
r+ 1 ∓

√
(r− 3)(r+ 1)
2r
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x
1 − 1

r
0 1p q

f(f(x))

y = x

This period-2 cycle is stable when r < 1 +
√

6 = 3.4494:

d

dx
f(f(x))

∣∣∣∣
x=p

= f ′(f(p))f ′(p) = f ′(p)f ′(q) = 4 + 2r− r2

|4 + 2r− r2| < 1 ⇒ 3 < r < 1 +
√

6 = 3.4494

At r = 3.4494, a period-4 cycle is born!

“period doubling bifurcations”

r
0 1 3 3.44

r1 = 3 period-2 cycle born
r2 = 3.4494 period-4 cycle born
r3 = 3.544 period-8 cycle born
r4 = 3.564 period-16 cycle born

...
r∞ = 3.5699

After r > r∞, chaotic behavior for a window of r, followed by win-
dows of periodic behavior (e.g., period-3 cycle around r = 3.83).

Below is the cobweb diagram for r = 3.9 which is in the chaotic
regime:
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