ECE 6552 — Lecture 4 *
PERIODIC ORBITS IN THE PLANE CONTINUED

January 16 2025

Overview:

¢ Bendixson’s Theorem (Recall)
¢ Poincaré-Bendixson Theorem
¢ Index Theory

Additional Reading;:

¢ Khalil, Chapter 2.6

Remarks

The Jordan form presented for linear systems with complex eigenval-
ues in Lecture 2 was presented as the real Jordan form. The complex

Jordan form is given by:
M0

where A\;, = a % j3. For the complex form J. = P1AP, P will
be the eigenvectors matrix with complex entries. If we instead use
the real Jordan form J; as given in Lecture 2, then P will need to be
solved accordingly to satisfy .J, = P"1AP.

For the complex form, the similarity transformation
Je=P71AP

holds, where P is formed from the (generally complex) eigenvectors
of A.

If we instead use the real Jordan form J; as presented in Lecture 2,

a —=p

Boal’

then the transformation matrix P must be constructed differently in
order to satisfy

Jr:

J, =P lAP.

One way to construct such a matrix P is as follows. Let v € C? be
a complex eigenvector of A corresponding to the eigenvalue A =
a — jf3, and write

v =u-+ jw, u,wG]Rz.
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Then the real matrix

P = {u w}
is invertible, and satisfies
plap= 1" _B] = J.
b8«

In this case, the coordinate transformation z = P~ !z yields the real

Jordan form dynamics
2= Jrz.

Example :

Consider the system:

i = [m—xz] - A=
23017372

The eigenvalues of the system matrix are A\j» = £j. The real Jordan

form is then:

0 -1
J pr—

The eigenvector corresponding to A\; = —j is
1 iy 0
Tl T T

Thus, we can form the transformation matrix:

10
11

which gives the similarity transformation:

0 -1
1 0

P =

J, =P lApP =
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(A=Xv=0
1+ 1] _
{2 —1+J}”*0
— V= 1
i+



Periodic Orbits in the Plane Continued

Two criteria:

1. Bendixson® (absence of periodic orbits)

2. Poincaré-Bendixson (existence of periodic orbits)

Poincaré-Bendixson Theorem: Suppose M is compact3 and positively

invariant for the planar, time invariant system & = f(z),z € R2 If M

contains no equilibrium points, then it contains a periodic orbit.

Example: Harmonic Oscillator

s 0 -1 T = —x
%)
1

Forany R > r > 0, the ring {z : 2 < 22 + 23 < R?} is compact,
invariant and contains no equilibria = at least one periodic orbit.
(We know there are infinitely many in this case.)

The “no equilibrium” condition in the PB theorem can be relaxed as:

“If M contains one equilibrium which is an unstable focus or
unstable node”

Proof sketch: Since the equilibrium is an unstable focus or node, we
can encircle it with a small closed curve on which f(z) points out-
ward. Then the set obtained from M by carving out the interior of
the closed curve is positively invariant and contains no equilibrium.

Example 2, Lecture 3: Recall that we were given the system:

i1 = a1 + 19 — 11 (25 + 23)

dp = =221 + 1 — :Ez(x% + x%)

We were asked to show that B, £ {z|2? + 23 < r?} is positively
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2 Recall that Bendixson’s theorem
said that if div(f(x)) # 0 and does
not change sign, then D contains no
periodic orbits.

31i.e., closed and bounded

3



ECE 6552 — LECTURE 4 4

invariant for sufficiently large r:

2 2
x1 + @y — 21 (2 + 25) 1
Fw) i) = Fa) |
—2x1 + 23 — 22 (2] + 25) o
= 1] +r120 — x%(w% + 23)—2wya0 + 15 — x%(x% + 23)
= —mm+ — (a1 +23)?
which used the inequality This is a special case of the Cauchy-
Schwarz inequality: |(a,b)| < |la|||b||
|21‘11‘2| < l‘% + l‘%, with a = (z1,x2) and b = (z3,71):

) ] o |z1@2 4+ zpzq| < 4/ (22 + 23) (23 + a3)
to arrive at the final condition: SR
2212 | < 27 + 25

F(@) n(e) < 23+ ad) + (2 + ad) — (2 + a2)?

2
32 4 n(z)= { o }
= E’f’ - 4z 2
Therefore, f(z) -n(z) < 3r2 —r* <0if 12 > 3. f(;)’
So, we can conclude that B, is positively invariant for r > \/g and >

contains the equilibrium = = 0.

of
ox

_ l 1 1 1 Mo =1 ;jﬁ unstable focus.
20 -2 1 ’

Therefore, B, must contain a periodic orbit.

A more general form of the PB Theorem states that, for time invari-
ant, planar systems, bounded trajectories converge to equilibria,
periodic orbits, or unions of equilibria connected by trajectories.

Corollary: No chaos for time invariant planar systems.

Index Theory

Again, applicable only to planar systems.

Definition (index): The index of a closed curve is k if, when travers-
ing the curve in one direction, f(x) rotates by 27k in the same direc-
tion. The index of an equilibrium is defined to be the index of a small
curve around it that doesn’t enclose another equilibrium.




type of equilibrium or curve index
node, focus, center +1
saddle -1
any closed orbit +1

a closed curve not encircling any equilibria o

The last claim (index = 0) follows from the following observations:

e Continuously deforming a closed curve without crossing equilibria
leaves its index unchanged.

e A curve not encircling equilibria can be shrunk to an arbitrarily
small one, so f(z) can be considered constant.

Theorem: The index of a closed curve is equal to the sum of indices
of the equilibria inside.

Graphical proof: Shrinking curve c to ¢’ below without crossing equi-
libria does not change the index. The index of ¢ is the sum of the
indices of the curves encircling the equilibria because the thin "pipes"
connecting these curves do not affect the index of ¢.

contributions from the two sides cancel out

The following corollary is useful for ruling out periodic orbits (like
Bendixson’s Theorem studied in the previous lecture):

Corollary: Inside any periodic orbit there must be at least one equi-
librium and the indices of the equilibria enclosed must add up to
+1.

)
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Example (from last lecture):

T = X2

iy = —5:cz+m1—x?+w%x2 6>0

Bendixson’s Criterion: No periodic orbit can lie entirely in one of the
regions z1 < —V/3, —V/6 < a1 < V6, or 21 > V6.

Now apply the corollary above.

Equilibria: (0,0), (¥1,0). To find their indices evaluate the Jacobian:

of

oxr

0 1
z=(0,0) [ 1 =9 ] + 0

<0

The eigenvalues are real and have opposite signs, therefore (0,0) is a
saddle: index = —1.

of

ox

0 1
= AN+ (§—1N+2 =0.
z=(F1,0) [ -2 1-6 ] + Ly

>0

The eigenvalues are either real with the same sign (node) or complex
conjugates (focus or center), therefore (F1,0) each has index= +1.

Thus, the corollary above rules out the periodic orbit in the middle
plot below. It does not rule out the others, but does not prove their
existence either. Bendixson’s Criterion rules out neither of the three.
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