ECE 6552 — Lecture 3'

PHASE POTRAITS OF NONLINEAR SYSTEMS
NEAR HYPERBOLIC EQUILIBRIA

January 20 2026

Overview:

¢ Hartman-Grobman Theorem
¢ Bendixson’s Theorem

e Invariant Sets

Additional Reading;:

¢ Khalil, Chapter 2

Review: Phase Portraits of Linear Systems: & = Ax

Consider our pendulum linearized at the upright angle

Let’s specifically take g = 9.8,k = 0,m = 1,and! = 1. The
eigenvalues for the system are then A; = 3.13, \; = —3.13. From
yesterday, we know that this yields a saddle node, but we can further
illustrate this using the phase portrait:

Original Coordinates

We can transform this into Jordan Form by first setting our Jordan
form matrix to:

J— 3.13 0
0 =313

* Based on notes created by Murat
Arcak and licensed under a Creative
Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.


http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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which yields the eigenvectors: These eigenvectors are found by solving

(A*)\ZI)’UZ:O
v = 1 Uy = 1
V703137 2 |=313

Thus the transformation into jordan form is provided by J = P~1AP

P= [”1 ”2} - [3.113 —31.13]

We can recalculate J as a sanity check. Finaly, we can transform our

with the matrix:

coordinates using the transformation:
z=P g

with the dynamics
=Mz, 2=MX2

This new system yields the phase portrait shown below

7

Jordan Form Coordinates




Phase Portraits of Nonlinear Systems Near Hyperbolic Equilibria

Definition: Hyperbolic Equilibrium. Linearization has no eigenvalues
on the imaginary axis

Phase portraits of nonlinear systems near hyperbolic equilibria are
qualitatively similar to the phase portraits of their linearization. Ac-
cording to the Hartman-Grobman Theorem (below) a “continuous
deformation” maps one phase portrait to the other.

If z* is a hyperbolic equilibrium of & = f(x),z € R", then there
exists a homeomorphism® z = h(x) defined in a neighborhood of
x* that maps trajectories of & = f(z) to those of 2 = Az where
A A Of

— Oz

r=x*

The hyperbolicity condition can’t be removed:

Example:
i1 = —x + axy(v3 + 23) P = ar®
T9 = 21 —l—axz(x%—i—x%) 6=
z* = (0,0) a=9 _ |0
o~ 1 0

Oz

There is no continuous deformation that maps the phase portrait of
the linearization to that of the original nonlinear model:

&= Az &= f(z)

1/

o\
!
|
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*a continuous map with a continuous
inverse

This can be equivalently written in
vector form as

—x5 + azq (a3 + 23)

= 1 + axp (22 + 23)
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Periodic Orbits in the Plane

Theorem: Bendixson’s Theorem. For a time-invariant planar system

= filz1,22) dp = fa(z1,22),

if the divergence V - f(x) = 0h1 4 9P i not identically zero and
& Dy T Dy y

L . div(f(z)) =V f(z
does not change sign in a simply connected region D, then there are o
no periodic orbits lying entirely in D. = (87:1 &’cn) (fiooe o fn)
Proof: By contradiction. Suppose a periodic orbit J lies in D. Let S = f g
i=1 1‘1

denote the region enclosed by J and n(z) the normal vector to J at x.

Then f(x) - n(z) = 0 for all z € J. By the Divergence Theorem: Note: the form ¥ - f() is sometimes
considered an abuse of notation since

we should not apply an operator (V)

/ f d 0 — / v. f through multiplication.
=0 20 f(@)  n(z)
Example:
1 = X2
I = —0xp+x —a?“;’+x%x2 6>0
0 0
V'f(x):a—£+a—ﬁ=x%76

Therefore, no periodic orbit can lie entirely in the region z; < -5
where V - f(z) > 0, or V6 <1 < \/gwhereV~f(1:) < 0, or
x1 > /6 where V - f(z) >0

not possible: 2

4|

possible:

L1




Invariant Sets

Notation: ¢(t,zo) denotes a trajectory of & = f(x) with initial condi-
tion z(0) = .

Definition: A set M C R" is positively invariant if, for
each g € M, ¢(t,z9) € M forallt >0

n(z)

If f(x)-n(xz) <0 on the boundary then M is positively invariant.

Example 1: A predator-prey model (Lotka-Volterra equations)

&= (a—by)x Prey (exponential growth when y = 0)
y=(cx—d)y Predator (exponential decay when z = 0)
a,b,c,d,>0

The nonnegative quadrant is invariant:

(x-axis:) [agc] . [_01] =0
(y-axis:) [_Zyl . l_oll =0
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Phase Diagram

of Predator-Prey Model
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Prey Population

Example 2: (Similar to Example 2.8 in Khalil)

= acl-l-xz—:cl(:v%-l-x%)

—2x1 + xp — xp (23 + 23)

1
)

Show that B, £ {z|22 + 23 < 72} is positively invariant for suffi-
ciently large r.

21+ X0 — xl(x% + 23)
—221 4 75 — 3 (23 + 23)

ORI o

2 2
= o7+ ayxy — a3 (2 + a3) —2xy2p + 05 — 25 (2} + 23)

—x120 + (]r'f + ,r%) - (x% + x%)Z

Next, we can use the inequality This is a special case of the Cauchy-

Schwarz inequality: |(a,b)| < ||a|/||b]|

|22122| < x% + x%, with a = (21,27) and b = (zp, 71):
|z122 + 22w | < /(22 + 23) (23 + 23)

to arrive at the final condition: 22123 < 22 + 2

1
f@) (@) < S(af +a3) + (0 +23) = (2] +23)°
3, . s n(z):{il}
= —rc—r 2 2
2
. 3,2 4 < 0if2> 3 pu
Therefore, f(x) -n(x) < 5r° —r* <0if r= > S
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