

ECE 6552 – Lecture 3¹

PHASE PORTRAITS OF NONLINEAR SYSTEMS NEAR HYPERBOLIC EQUILIBRIA

January 20 2026

¹ Based on notes created by Murat Arcak and licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Overview:

- Hartman-Grobman Theorem
- Bendixson's Theorem
- Invariant Sets

Additional Reading:

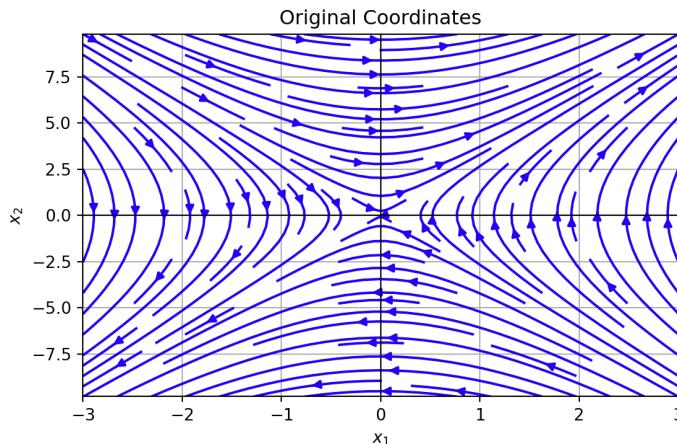
- Khalil, Chapter 2

Review: Phase Portraits of Linear Systems: $\dot{x} = Ax$

Consider our pendulum linearized at the upright angle

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ \frac{g}{l} & -\frac{k}{m} \end{bmatrix} x$$

Let's specifically take $g = 9.8$, $k = 0$, $m = 1$, and $l = 1$. The eigenvalues for the system are then $\lambda_1 = 3.13$, $\lambda_2 = -3.13$. From yesterday, we know that this yields a saddle node, but we can further illustrate this using the phase portrait:



We can transform this into Jordan Form by first setting our Jordan form matrix to:

$$J = \begin{bmatrix} 3.13 & 0 \\ 0 & -3.13 \end{bmatrix}$$

which yields the eigenvectors:

$$v_1 = \begin{bmatrix} 1 \\ 3.13 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ -3.13 \end{bmatrix}$$

These eigenvectors are found by solving
 $(A - \lambda_i I)v_i = 0$

Thus the transformation into jordan form is provided by $J = P^{-1}AP$ with the matrix:

$$P = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3.13 & -3.13 \end{bmatrix}$$

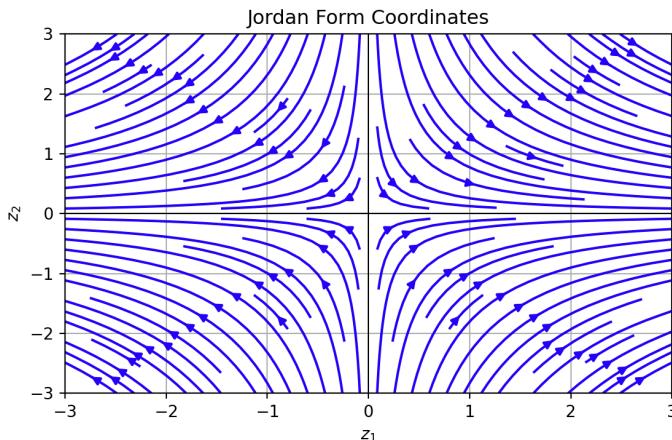
We can recalculate J as a sanity check. Finally, we can transform our coordinates using the transformation:

$$z = P^{-1}x$$

with the dynamics

$$\dot{z}_1 = \lambda_1 z_1, \quad \dot{z}_2 = \lambda_2 z_2$$

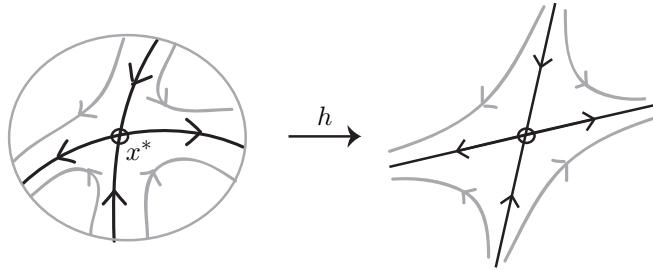
This new system yields the phase portrait shown below



Phase Portraits of Nonlinear Systems Near Hyperbolic Equilibria

Definition: Hyperbolic Equilibrium. Linearization has no eigenvalues on the imaginary axis

Phase portraits of nonlinear systems near hyperbolic equilibria are qualitatively similar to the phase portraits of their linearization. According to the Hartman-Grobman Theorem (below) a “continuous deformation” maps one phase portrait to the other.



Theorem: Hartman-Grobman Theorem.

If x^* is a hyperbolic equilibrium of $\dot{x} = f(x), x \in \mathbb{R}^n$, then there exists a homeomorphism² $z = h(x)$ defined in a neighborhood of x^* that maps trajectories of $\dot{x} = f(x)$ to those of $\dot{z} = Az$ where $A \triangleq \frac{\partial f}{\partial x} \Big|_{x=x^*}$.

² a continuous map with a continuous inverse

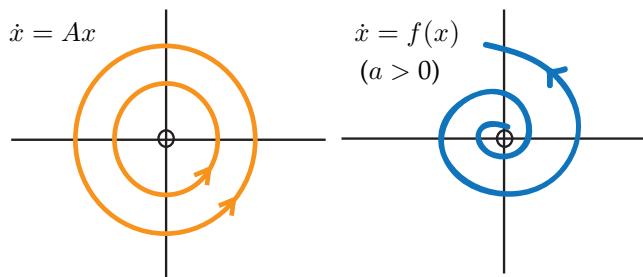
The hyperbolicity condition can't be removed:

Example:

$$\begin{aligned} \dot{x}_1 &= -x_2 + ax_1(x_1^2 + x_2^2) & \Rightarrow \dot{r} &= ar^3 \\ \dot{x}_2 &= x_1 + ax_2(x_1^2 + x_2^2) & \dot{\theta} &= 1 \end{aligned}$$

$$x^* = (0,0) \quad A = \frac{\partial f}{\partial x} \Big|_{x=x^*} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

There is no continuous deformation that maps the phase portrait of the linearization to that of the original nonlinear model:



This can be equivalently written in vector form as

$$\dot{x} = \begin{bmatrix} -x_2 + ax_1(x_1^2 + x_2^2) \\ x_1 + ax_2(x_1^2 + x_2^2) \end{bmatrix}$$

Periodic Orbits in the Plane

Theorem: Bendixson's Theorem. For a time-invariant planar system

$$\dot{x}_1 = f_1(x_1, x_2) \quad \dot{x}_2 = f_2(x_1, x_2),$$

if the divergence $\nabla \cdot f(x) = \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2}$ is not identically zero and does not change sign in a simply connected region D , then there are no periodic orbits lying entirely in D .

Proof: By contradiction. Suppose a periodic orbit J lies in D . Let S denote the region enclosed by J and $n(x)$ the normal vector to J at x . Then $f(x) \cdot n(x) = 0$ for all $x \in J$. By the Divergence Theorem:

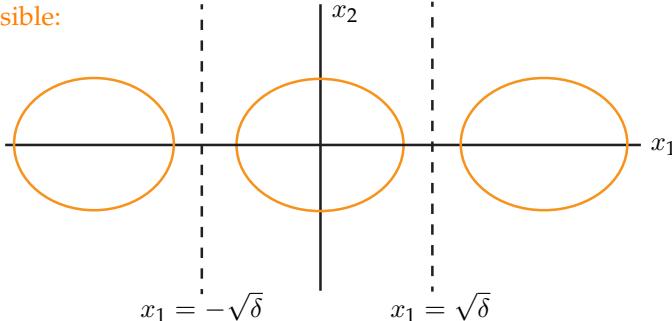
$$\underbrace{\int_J f(x) \cdot n(x) d\ell}_{=0} = \underbrace{\iint_S \nabla \cdot f(x) dx}_{\neq 0}$$

Example:

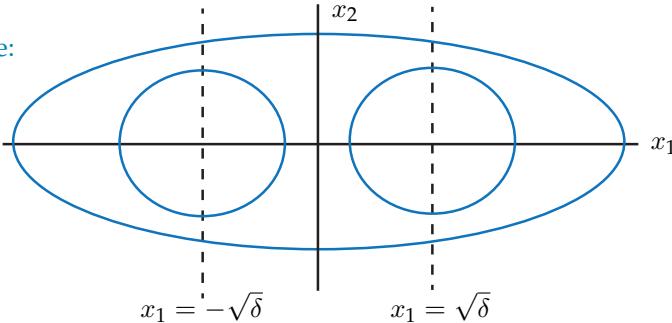
$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -\delta x_2 + x_1 - x_1^3 + x_1^2 x_2 \quad \delta > 0 \\ \nabla \cdot f(x) &= \frac{\partial f_1}{\partial x_1} + \frac{\partial f_2}{\partial x_2} = x_1^2 - \delta \end{aligned}$$

Therefore, no periodic orbit can lie entirely in the region $x_1 \leq -\sqrt{\delta}$ where $\nabla \cdot f(x) \geq 0$, or $-\sqrt{\delta} \leq x_1 \leq \sqrt{\delta}$ where $\nabla \cdot f(x) \leq 0$, or $x_1 \geq \sqrt{\delta}$ where $\nabla \cdot f(x) \geq 0$.

not possible:

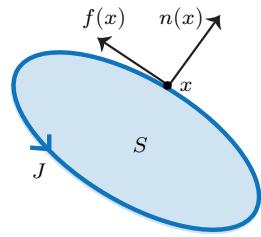


possible:



$$\begin{aligned} \text{div}(f(x)) &= \nabla \cdot f(x) \\ &= \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right) \cdot (f_1, \dots, f_n) \\ &= \sum_{i=1}^n \frac{\partial f_i}{\partial x_i}. \end{aligned}$$

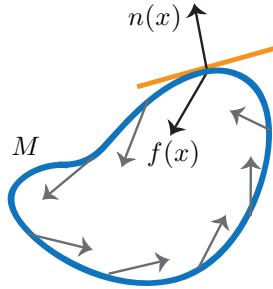
Note: the form $\nabla \cdot f(x)$ is sometimes considered an abuse of notation since we should not apply an operator (∇) through multiplication.



Invariant Sets

Notation: $\varphi(t, x_0)$ denotes a trajectory of $\dot{x} = f(x)$ with initial condition $x(0) = x_0$.

Definition: A set $M \subset \mathbb{R}^n$ is **positively (negatively)** invariant if, for each $x_0 \in M$, $\varphi(t, x_0) \in M$ for all $t \geq 0$ ($t \leq 0$).



If $f(x) \cdot n(x) \leq 0$ on the boundary then M is positively invariant.

Example 1: A predator-prey model (Lotka-Volterra equations)

$$\dot{x} = (a - by)x \quad \text{Prey (exponential growth when } y = 0\text{)}$$

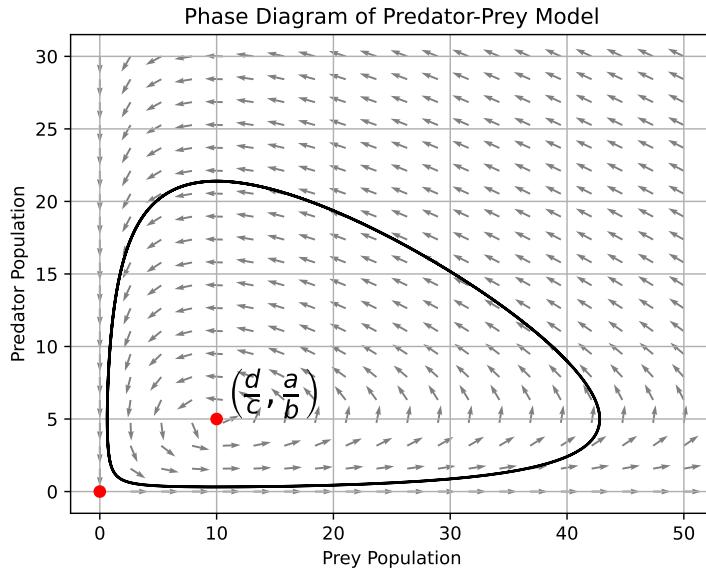
$$\dot{y} = (cx - d)y \quad \text{Predator (exponential decay when } x = 0\text{)}$$

$$a, b, c, d, > 0$$

The nonnegative quadrant is invariant:

$$(\text{x-axis:}) \quad \begin{bmatrix} ax \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -1 \end{bmatrix} = 0$$

$$(\text{y-axis:}) \quad \begin{bmatrix} 0 \\ -dy \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 0 \end{bmatrix} = 0$$



Example 2: (Similar to Example 2.8 in Khalil)

$$\begin{aligned}\dot{x}_1 &= x_1 + x_2 - x_1(x_1^2 + x_2^2) \\ \dot{x}_2 &= -2x_1 + x_2 - x_2(x_1^2 + x_2^2)\end{aligned}$$

Show that $B_r \triangleq \{x | x_1^2 + x_2^2 \leq r^2\}$ is positively invariant for sufficiently large r .

$$\begin{aligned}f(x) \cdot n(x) &= \begin{bmatrix} x_1 + x_2 - x_1(x_1^2 + x_2^2) \\ -2x_1 + x_2 - x_2(x_1^2 + x_2^2) \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ &= \color{orange}x_1^2 + \color{blue}x_1 x_2 - x_1^2(x_1^2 + x_2^2) - \color{blue}2x_1 x_2 + \color{orange}x_2^2 - x_2^2(x_1^2 + x_2^2) \\ &= \color{blue}-x_1 x_2 + (\color{orange}x_1^2 + \color{orange}x_2^2) - (x_1^2 + x_2^2)^2\end{aligned}$$

Next, we can use the inequality

$$|2x_1 x_2| \leq x_1^2 + x_2^2,$$

to arrive at the final condition:

$$\begin{aligned}f(x) \cdot n(x) &\leq \frac{1}{2}(x_1^2 + x_2^2) + (x_1^2 + x_2^2) - (x_1^2 + x_2^2)^2 \\ &= \frac{3}{2}r^2 - r^4\end{aligned}$$

Therefore, $f(x) \cdot n(x) \leq \frac{3}{2}r^2 - r^4 \leq 0$ if $r^2 \geq \frac{3}{2}$.

This is a special case of the Cauchy-Schwarz inequality: $|\langle a, b \rangle| \leq \|a\| \|b\|$ with $a = (x_1, x_2)$ and $b = (x_2, x_1)$:

$$\begin{aligned}|x_1 x_2 + x_2 x_1| &\leq \sqrt{(x_1^2 + x_2^2)(x_1^2 + x_2^2)} \\ |2x_1 x_2| &\leq x_1^2 + x_2^2\end{aligned}$$

