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Overview:

• Hartman-Grobman Theorem

• Bendixson’s Theorem

• Invariant Sets

Additional Reading:

• Khalil, Chapter 2

Review: Phase Portraits of Linear Systems: ẋ = Ax

Consider our pendulum linearized at the upright angle

ẋ =

[
0 1
g
l − k

m

]
x

Let’s specifically take g = 9.8, k = 0, m = 1, and l = 1. The
eigenvalues for the system are then λ1 = 3.13, λ2 = −3.13. From
yesterday, we know that this yields a saddle node, but we can further
illustrate this using the phase portrait:

We can transform this into Jordan Form by first setting our Jordan
form matrix to:

J =

[
3.13 0

0 −3.13

]

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
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which yields the eigenvectors: These eigenvectors are found by solving
(A− λiI)vi = 0

v1 =

[
1

3.13

]
, v2 =

[
1

−3.13

]

Thus the transformation into jordan form is provided by J = P−1AP

with the matrix:

P =
[
v1 v2

]
=

[
1 1

3.13 −3.13

]

We can recalculate J as a sanity check. Finaly, we can transform our
coordinates using the transformation:

z = P−1x

with the dynamics
ż1 = λ1z1, ż = λ2z2

This new system yields the phase portrait shown below
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Phase Portraits of Nonlinear Systems Near Hyperbolic Equilibria

Definition: Hyperbolic Equilibrium. Linearization has no eigenvalues
on the imaginary axis

Phase portraits of nonlinear systems near hyperbolic equilibria are
qualitatively similar to the phase portraits of their linearization. Ac-
cording to the Hartman-Grobman Theorem (below) a “continuous
deformation” maps one phase portrait to the other.

x∗
h

Theorem: Hartman-Grobman Theorem.
If x∗ is a hyperbolic equilibrium of ẋ = f(x),x ∈ Rn, then there
exists a homeomorphism2 z = h(x) defined in a neighborhood of 2 a continuous map with a continuous

inversex∗ that maps trajectories of ẋ = f(x) to those of ż = Az where

A ≜ ∂f
∂x

∣∣∣
x=x∗

.

The hyperbolicity condition can’t be removed:

Example: This can be equivalently written in
vector form as

ẋ =

[
−x2 + ax1(x

2
1 + x2

2)
x1 + ax2(x

2
1 + x2

2)

]ẋ1 = −x2 + ax1(x
2
1 + x2

2)

ẋ2 = x1 + ax2(x
2
1 + x2

2)
=⇒

ṙ = ar3

θ̇ = 1

x∗ = (0, 0) A =
∂f

∂x

∣∣∣∣
x=x∗

=

[
0 −1
1 0

]

There is no continuous deformation that maps the phase portrait of
the linearization to that of the original nonlinear model:

(a > 0)
ẋ = Ax ẋ = f(x)
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Periodic Orbits in the Plane

Theorem: Bendixson’s Theorem. For a time-invariant planar system

ẋ1 = f1(x1,x2) ẋ2 = f2(x1,x2),

if the divergence ∇ · f(x) = ∂f1
∂x1

+ ∂f2
∂x2

is not identically zero and
div(f (x)) = ∇ · f (x)

=

(
∂

∂x1
, · · · ,

∂

∂xn

)
· (f1, · · · , fn)

=
n

∑
i=1

∂fi
∂xi

.

Note: the form ∇ · f (x) is sometimes
considered an abuse of notation since
we should not apply an operator (∇)
through multiplication.

does not change sign in a simply connected region D, then there are
no periodic orbits lying entirely in D.

Proof: By contradiction. Suppose a periodic orbit J lies in D. Let S
denote the region enclosed by J and n(x) the normal vector to J at x.
Then f(x) · n(x) = 0 for all x ∈ J . By the Divergence Theorem:

J
S

• x

f (x) n(x)

∫
J
f(x) · n(x)dℓ︸ ︷︷ ︸

= 0

=
∫∫

S
∇ · f(x)dx︸ ︷︷ ︸
̸= 0

.

Example:

ẋ1 = x2

ẋ2 = −δx2 + x1 − x3
1 + x2

1x2 δ > 0

∇ · f(x) = ∂f1

∂x1
+

∂f2

∂x2
= x2

1 − δ

Therefore, no periodic orbit can lie entirely in the region x1 ≤ −
√
δ

where ∇ · f(x) ≥ 0, or −
√
δ ≤ x1 ≤

√
δ where ∇ · f(x) ≤ 0, or

x1 ≥
√
δ where ∇ · f(x) ≥ 0.

x1 = −
√
δ

x1 = −
√
δ

x1 =
√
δ

x1 =
√
δ

x1

x1

x2

x2

not possible:

possible:
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Invariant Sets

Notation: φ(t,x0) denotes a trajectory of ẋ = f(x) with initial condi-
tion x(0) = x0.

Definition: A set M ⊂ Rn is positively (negatively) invariant if, for
each x0 ∈ M , φ(t,x0) ∈ M for all t ≥ 0 (t ≤ 0).

n(x)

f(x)M

If f(x) · n(x) ≤ 0 on the boundary then M is positively invariant.

Example 1: A predator-prey model (Lotka-Volterra equations)

ẋ = (a− by)x Prey (exponential growth when y = 0)

ẏ = (cx− d)y Predator (exponential decay when x = 0)

a, b, c, d,> 0

The nonnegative quadrant is invariant:

(x-axis:)

[
ax

0

]
·
[

0
−1

]
= 0

(y-axis:)

[
0

−dy

]
·
[
−1
0

]
= 0
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Phase Diagram of Predator-Prey Model

Example 2: (Similar to Example 2.8 in Khalil)

ẋ1 = x1 + x2 − x1(x
2
1 + x2

2)

ẋ2 = −2x1 + x2 − x2(x
2
1 + x2

2)

Show that Br ≜ {x|x2
1 + x2

2 ≤ r2} is positively invariant for suffi-
ciently large r.

f(x) · n(x) =
[

x1 + x2 − x1(x
2
1 + x2

2)

−2x1 + x2 − x2(x
2
1 + x2

2)

]
·
[
x1

x2

]
= x2

1 + x1x2 − x2
1(x

2
1 + x2

2)−2x1x2 + x2
2 − x2

2(x
2
1 + x2

2)

= −x1x2 + (x2
1 + x2

2)− (x2
1 + x2

2)
2

Next, we can use the inequality This is a special case of the Cauchy-
Schwarz inequality: |⟨a, b⟩| ≤ ∥a∥∥b∥
with a = (x1,x2) and b = (x2,x1):

|x1x2 + x2x1| ≤
√
(x2

1 + x2
2)(x

2
1 + x2

2)

|2x1x2| ≤ x2
1 + x2

2

|2x1x2| ≤ x2
1 + x2

2,

to arrive at the final condition:

f(x) · n(x) ≤ 1
2
(x2

1 + x2
2) + (x2

1 + x2
2)− (x2

1 + x2
2)

2

=
3
2
r2 − r4

x1

x2
n(x)=

[
x1
x2

]

f (x)
Therefore, f(x) · n(x) ≤ 3

2r
2 − r4 ≤ 0 if r2 ≥ 3

2 .
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